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1 Abstract

We develop a fundamentally different stochastic dynamic programming model of trading costs. Built on
a strong theoretical foundation, our model provides insights to market participants by splitting the overall
move of the security price during the duration of an order into the Market Impact (price move caused by
their actions) and Market Timing (price move caused by everyone else) components. We derive formulations
of this model under different laws of motion of the security prices, starting with a simple benchmark scenario
and extending this to include multiple sources of uncertainty, liquidity constraints due to volume curve shifts
and relate trading costs to the spread.

We develop a numerical framework that can be used to obtain optimal executions under any law of motion
of prices and demonstrate the tremendous practical applicability of our theoretical methodology including the
powerful numerical techniques to implement them. Our decomposition of trading costs into Market Impact
and Market Timing allows us to deduce the zero sum game nature of trading costs. It holds numerous
lessons for dealing with complex systems, wherein reducing the complexity by splitting the many sources of

uncertainty can lead to better insights in the decision process.
2 Introduction

The recent blockbuster book, David and Goliath: Underdogs, Misfits, and the Art of Battling Giants
(Gladwell 2013), talks about the advantages of disadvantages, which in the legendary battle refers to (among
other things) the nimbleness that David possesses due to his smaller size and lack of armor, that comes in
handy while defeating the massive and seemingly unbeatable Goliath. Despite the inspiring tone of the story
the efforts of the most valiant financial market participant can seem puny and turn out to be inadequate, as it
gets undone when dealing with the gargantuan and mysterious temperament of uncertainty in the markets. A
trader’s conundrum is whether (and how much) to trade during a given interval or wait for the next interval
when the price momentum is more favorable to his direction of trading. We aim to provide mechanisms
that can aid participants and make their life easier when confronting the markets; but given the nature of
uncertainty in the social sciences, any weapon will prove to be insufficient compared to the sling shot that
delivered the fatal blow to Goliath, until perhaps, one can discern the ability to read the minds of all the
market participants.

We develop a fundamentally different stochastic dynamic programming model of trading
costs (section based on the Bellman principle of optimality. Built on a strong theoretical
foundation, this model can provide insights to market participants by splitting the overall mowve
of the security price during the duration of an order into the Market Impact (price move
caused by their actions) and Market Timing (price move caused by everyone else) components.

Plugging different distributions of prices and volumes into this framework can help traders decide when to



bear higher Market Impact by trading more in the hope of offsetting the cost of trading at a higher price
later. We derive formulations of this model under different laws of motion of the security prices. We start
with a benchmark scenario and extend this to include multiple sources of uncertainty, liquidity constraints
due to volume curve shifts and relate trading costs to the spread (section @

The unique aspect of our approach to trading costs is a method of splitting the overall move of the security
price during the duration of an order into two components (Collins & Fabozzi 1991; Treynor 1994; Yegerman
& Gillula 2014). One component gives the costs of trading, that arise from the decision process that went
into executing that particular order, as captured by the price moves caused by the executions that comprise
that order. The other component gives the costs of trading, that arise due to the decision process of all the
other market participants, during the time this particular order was being filled. This second component
is inferred, since it is not possible to calculate it directly (at least with the present state of technology and
publicly available data) and it is the difference between the overall trading costs and the first component,
which is the trading cost of the executions that make up that order alone. The first and the second component
arise due to competing forces, one from the actions of a particular participant, and the other from the actions
of everyone else, that would be looking to fulfill similar objectives.

We develop a numerical technique ( section@) that can be used to obtain optimal executions
under any law of motion of prices, using a modification of the technique for pricing American
options (Longstaff € Schwartz 2001). Our results demonstrate the tremendous practical appli-
cability of our theoretical framework including the numerical techniques to implement them.

The decomposition of trading costs into Market Impact and Market Timing allows us to
deduce the zero sum game nature of trading costs (section . It holds numerous lessons for
dealing with complex systems, wherein reducing the complexity by splitting the many sources

of uncertainty can lead to better insights in the decision proces{].

2.1 Deeper Intuition from Realistic Trading Situations

Naturally, it follows that each particular participant can only influence to a greater degree the cost that
arises from his actions as compared to the actions of others over which he has lesser influence, but an
understanding of the second component can help him plan and alter his actions to counter any adversity that
might arise from the latter. Any good trader would do this intuitively as an optimization process, that would

minimize costs over two variables direct impact and timing, the output of which recommends either slowing

1 To elaborate on this, in any social system it would be helpful to first distinguish the different participants and how
their actions contributes to uncertainty. If this is possible, then understanding these components of uncertainty can
sometimes help in the analysis of social systems. For example, if we are looking to analyze the shopping patterns in a
mall, if we can distinguish shoppers who buy on impulse and shoppers who buy after looking for discounts, we might
be better able to forecast sales and analyze this system better. Also, our study can aid in the understanding of complex
non-linear phenomena, such as the evolution of prices in financial markets by considering the price changes as being
caused by multiple sources of uncertainty. Such an approach of understanding the various sources of uncertainty can
be useful in the study of complicated physical phenomena as well.



down or speeding up his executions. With our methodology, traders now actually have a quantitative indicator
to fine tune their decision process. When we decompose the costs, it would be helpful to try and understand
how the two sub costs could vary as a proportion of the total. The volatility in these two components, which
would arise from different sources (market conditions) would require different responses and hence would
affect the optimization problem mentioned above, invoking different sorts of handling. Hence, based on an
understanding of two components and the situation at hand, traders would know which cost would be the
more unpredictable one and hence focus their efforts on minimizing the costs arising from that component.

The key innovation can be explained as follows:

1. A jump up in price on an execution that comprises a buy order is considered adverse and attributed as
impact, while a fall in price is not. Yes, the price could fall further if not for the backstop provided by
the executions that comprise the buy order; but the key aspect to remember here is the bilateral nature
of trading. A price fall for the buyer (or a benefit for him) is impact for the seller (and hence adverse);
and the seller bears the impact cost in this case. To understand this better, we need to remember that
if there is a lack of liquidity a buyer can only bid up the price in the hopes of obtaining enough shares
to meet his demand and it is these jumps in price in a direction, adverse to his direction of trading that

are attributed as his market impact.

2. Most trading cost models consider elaborate theories of the price drifting around, but what actually
happens during the transfer of securities is one party, usually, has an upper hand and that is the portion
we look to measure as impact for the other party. The key fallout from measuring impact this way is
that we have a better way to measure the effect of our actions from when we have a concrete advantage,

to when we are okay to put up with a certain disadvantage.

3. The message from this reality is that despite our ambitions to optimize the entire trading process, what
we can control is the market impact due to our trades; the market timing, which is the impact for
our counter parties is dependent on the decision process of these other market participants and hence

beyond the domain of what we can hope (or choose) to optimize.

4. While no measure of trading costs is perfect and complete, this methodology goes a long way in actually
providing tangible ways for someone to understand the effect of their decision process and the associated

implementation of trades.

Another analogy to understand this methodology is to think of each execution as effecting a state transition
from one price level to another. The impact is then the cost or charge involved to make the state transition.

We can also think of the change in price levels as moving from one station to another in a train and the ticket



price is the cost involved to make this journey. If there is excess demand to travel from one station to another,
the ticket price, which is the same for everyone at a particular point in time, changes accordingly and only
those that are willing to pay can make the journey. That we are considering the state transitions for each
execution at millisecond intervals means that we are building from the bottom up and aggregating smaller
effects into an overall impact number for the order based on the executions that comprise it. Theoretically
since it is possible that multiple parties could execute simultaneously (two or more buyers and / or sellers on
each side), the question of which of the parties is more responsible for causing the price level to change and
whether there needs to be a proportional allocation of the price jump does not set in, since all the parties are
travelers on the same journey and they all have to pay the ticket price. Though, for executions that happen
through a continuous auction process at larger intervals of time, a proportional allocation based on the size
of each parties execution might be a possible alternative and will be pursued in later papers.

Figures [I] and [2] show the reversion in the price after an order has completed, broken down by volatility
and momentum buckets. The full order sample includes 148,812 orders from 70+ countries with 17 countries

having at-least a thousand orders each. The reversion is based on two measures:

1. In time, 5 minutes and 60 minutes after an order has completed.

2. In multiples of the order size, one times and five times the size of the order.

The five Trade Momentum buckets are based on the side adjusted percentage return during the order’s

trading interval:

1. Significant Adverse (<-2%)
2. Adverse (-1/3% thru -2%)

3. Neutral (-1/3% thru +1/3%)
4. Favorable (+1/3% thru 2%)

5. Significant Favorable (>+2%)

The four Trade Volatility buckets are based on the coefficient of variation of prices during the execution

horizon:



1. High Volatility (>0.0050)
2. Moderate Volatility (0.0010 thru 0.0050)
3. Low Volatility (0.000000000000001 thru 0.0010)

4. No Volatility (<= 0.000000000000001)

The size of the bubbles indicates the relative magnitude of the order and its position on the vertical axis
signifies the reversion amount in basis points. The box and and the whisker capture the areas where 25%
and 75% of the sample resides. Not surprisingly, the momentum is higher in periods of greater volatility, as
seen more clearly from the measures based on multiples of the order size (right half of the figures [1f and .
The higher volatility accentuates the efforts required to trade in such an environment. This illustrates the
issue that traders face and the optimization process that is followed where they try to benefit from positive
momentum and try to avoid adverse momentum by trading more when adverse momentum is anticipated,

while being conscious of the level of volatility.

2.2 Related Literature

Building on the foundation laid by (Bertsimas € Lo 1998), another popular way to de-
compose trading costs is into temporary and permanent impact (See Almgren € Chriss 2001;
Almgren 2003; and Almgren, Thum, Hauptmann € Li 2005). While the theory behind this
approach is extremely elegant and considers both linear and nonlinear functions of the vari-
ables for estimating the impact, a practical way to compute it requires measuring the price a
certain interval after the order. This interval is ambiguous and could lead to lower accuracy
while using this measure.

More recent extensions include: minimizing the mean and variance of the costs of trading for the case of
market orders only to derive explicit formulas for the optimal trading strategies (Huberman & Stanzl 2005);
considering quadratic variation as a reasonable risk measure rather than variance, (Forsyth, Kennedy, Tse &
Windcliff 2012); the problem faced by an investor who must liquidate a given basket of assets over a finite
time horizon (Schied, Schéneborn & Tehranchi 2010); (Almgren & Lorenz 2007) derive optimal strategies
where the execution accelerates when the price moves in the trader’s favor, and slows when the price moves

adverselyﬂ

2(Kissell & Malamut 2006) term such adaptive strategies “aggressive-in-the-money”; A “passive-in-the-money” strategy would
react oppositely. consider. They assume that the investor’s utility has constant absolute risk aversion (CARA) and that the
asset prices are given by a very general continuous-time, multi-asset price impact model and show that the investor does no
worse if he narrows his search to deterministic strategies. . CARA has exponential utility of the form u (¢) =1 — e~ “¢, so that

"
the absolute risk aversion, A (¢) = — Z,éf)) = a, a constant. Wikipedia Link on Risk Aversion.



https://en.wikipedia.org/wiki/Risk_aversion

(Schied & Schoéneborn 2009) use a stochastic control approachﬂ building upon the continuous time model
of (Almgren 2003), and show that the value function and optimal control satisfy certain nonlinear parabolic
partial differential equations that can be solved numerically. (Kato 2014) develops a mathematical model of
optimal execution, by formulating it as a stochastic control problem in the continuous time domain. (Gatheral
& Schied 2011) find a closed-form solution for the optimal trade execution strategy in the Almgren-Chriss
framework assuming the underlying unaffected stock price (stock price before the impact or before the
transaction occurs) process is a GBM; (Schied 2013) investigates the robustness of this strategy with respect
to misspecification of the law of the underlying unaffected stock price process. (Guo & Zervos 2015) study
the optimal execution problem in the context of a continuous time model with multiplicative price impact,
involving singular control rather than absolutely continuous control. ﬁ

Building on empirical evidence (Lillo, Farmer & Mantegna 2003) that instantaneous market impact is
a strongly concave function of the volume, well approximated by a power law function at least for trading
rates that are not too high; (Curato, Gatheral & Lillo 2017) find that the discretized cost function exhibits a
rugged landscape, with many local minima separated by peaks. (Huberman & Stanzl 2004) provide theoretical
arguments showing that in the absence of quasi-arbitrage (availability of a sequence of round-trip trades that
generate infinite expected profits with an infinite Sharpe ratio, that is infinite expected profits per unit of risk),
permanent price-impact functions must be linear; though empirical investigations suggest that the shape of
the limit order book (LOB) can be more complex (Hopman 2007). (Gabaix, Gopikrishnan & Stanley 2006)
present a theory in which spikes in trading volume and returns, and hence stock market volatility, are created
by a combination of news and the trades of large investors explaining the power law distribution of price
impact. (Brunnermeier & Pedersen 2005; Carlin, Lobo & Viswanathan 2007) are extensions to situations
with several competing traders, wherein if one trader is forced to liquidate his holdings, other traders also
sell creating downward price pressure and buy back the assets later at a lower price.

In contrast to many studies, where the dynamics of the asset price process is taken as a
given fundamental, (Obizhaeva & Wang 2013) proposed a market impact model that derives its
dynamics from an underlying model of a LOB. In this model, the ask part of the LOB consists

of a uniform distribution of shares offered at prices higher than the current best ask price.

3(Wikipedia Link on Stochastic Control:| Stochastic control or stochastic optimal control is a subfield of control theory that
deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system.)
4 In classical control problems (Shreve 1988), the cumulative displacement of the state, caused by control, is the integral of

the control process (or some function of it), and so is absolutely continuous. In impulse control, this cumulative displacement
has jumps, between which it is either constant or absolutely continuous. Bounded variation control (defined to include any
stochastic control problem in which one restricts the cumulative displacement of the state caused by control to be of bounded
variation on finite time intervals) admits both these possibilities and also the possibility that the displacement of the state

caused by the optimal control is singularly continuous, at least with positive probability over some interval of time.


https://en.wikipedia.org/wiki/Stochastic_control

(Alfonsi, Fruth & Schied 2010) extend this by allowing for a general shape of the LOB defined via a
given density function, which can accommodate empirically observed LOB shapes and obtain a nonlinear
price impact of market orders. (Predoiu, Shaikhet & Shreve 2011) derive optimal strategies, (under a general
shape of the LOB), that are a mixture of lump purchases and continuous purchases with the rate of purchase
set to match the order book resilience. (Fruth, Schoneborn & Urusov 2014) analyze optimal strategies for a
risk neutral investor when liquidity varies deterministically (liquidity is time dependent; depth and resilience
can be independently time-dependent in contrast to the LOB model of Obizhaeva & Wang 2013) and find
that in the case of extreme changes in liquidity, it can even be optimal to completely refrain from trading in
periods of low liquidity. Empirical studies based on the LOB model are (Biais, Hillion & Spatt 1995; Potters
& Bouchaud 2003; Bouchaud, Gefen, Potters & Wyart 2004; and Weber & Rosenow 2005).

A related strand of literature looks at models of the LOB from the perspective of dealers seeking to submit
optimal strategies (maximize the utility of total terminal wealth) of bid and ask orders. (Ho & Stoll 1981)
analyze the optimal prices for a monopolistic dealer in a single stock when faced with a stochastic demand to
trade, modeled by a continuous time Poisson jump process, and facing return uncertainty, modeled by diffu-
sion processes. (Ho and Stoll 1980), consider the problem of dealers under competition (each dealer’s pricing
strategy depends not only on his own current and expected inventory position and his other characteristics,
but also on the current and expected inventory and other characteristics of the competitor) and show that
the bid and ask prices are shown to be related to the reservation (or indifference) prices of the agents.

(Cont, Stoikov & Talreja 2010) describe a stylized model for the dynamics of a limit order book, where
the order flow is described by independent Poisson processes and estimate the model parameters from high-
frequency order book time-series data from the Tokyo Stock Exchange. (Cont, Kukanov & Stoikov 2014)
study the price impact of order book events - limit orders, market orders, and cancellations - using the NYSE
Trades and Quotes data for fifty randomly selected stocks. (Avellaneda & Stoikov 2008) combine the utility
framework with the microstructure of actual limit order books, as described in the econo-physics literature,
to infer reasonable arrival rates of buy and sell orders; (Du, Zhu & Zhao 2016) extend the price dynamics
to follow a GBM in which the drift part is updated by Bayesian learning in the beginning of the transaction
day to capture the trader’s estimate of other traders’ target sizes and directions.

(Cont & Kukanov 2017) focus on the order placement problem, which is to choose an order type - market
or limit order - and which trading venue(s) to submit it to, when there are multiple alternatives. A numerical
algorithm for solving the order placement problem in a general case is provided using a robust modification of
the Robbins-Monro stochastic approximation technique (Robbins & Monro 1951; Nemirovski, Juditsky, Lan
& Shapiro 2009). (Guo, de Larrard & Ruan 2017) derive optimal placement strategies for both static and
dynamic cases (in the static case, as opposed to the dynamic case, a strategy is completely decided before

execution takes place, that is at ¢ = 0, and is unchanged over the entire order internal), under a correlated



random walk model, with mean-reversion for the best ask/bid price.

While our work focuses on separating impact and timing in the (Bertsimas € Lo 1998)
framework; a natural and interesting continuation would be to extend this separation to models
of the limit order book discussed above (Obizhaeva & Wang 2013).

Models of market impact and the design of better trading strategies are becoming an integral part of
the present trend at automation and the increasing use of algorithms. (Jain 2005) assembles the dates of
announcement and actual introduction of electronic trading by the leading exchange of 120 countries to
examine the long term and medium term impact of automation. He finds that automation of trading on
a stock exchange has a long-term impact on listed firms’ cost of equity. (Hendershott, Jones & Menkveld
2011) perform an empirical study on New York Stock Exchange stocks and find that algorithmic trading and
liquidity are positively related. It is worth noting a contrasting result from an earlier study. (Venkataraman
2001) compares securities on the New York Stock Exchange (NYSE) (a floor-based trading structure with
human intermediaries, specialists, and floor brokers) and the Paris Bourse (automated limit-order trading
structure). He finds that execution costs might be higher on automated venues even after controlling for
differences in adverse selection, relative tick size, and economic attributes. This means fully automated
exchanges, which anecdotally seems to be the way ahead, need to take special care to formulate rules, to help
liquidity providers better control the risks of order exposure.

What this also means is that, the design of better strategies and models is crucial to survive
and thrive in this continuing trend at automation. Our paper aims to fill the gap in existing
models of trading costs, which are theoretically elegant but are not readily applicable to real life
trading situations, since they do not allow participants to gauge how they are performing in
comparison to the other participants with whom they are competing for liquidity. Our models
have a strong theoretical foundation but they can be applied to actual trading situations due to
the insights they provide to participants. In addition, our numerical framework can be be used

to obtain optimal execution schedules under any law of motion of prices.
3 Dynamic Recursive Trading Cost Model

A dynamic programming approach lends itself naturally to modeling optimal execution strategies (Bert-
simas & Lo 1998). They start with a simple arithmetic random walk for the law of motion of prices and later
extend it to a geometric Brownian motion. Closed form solutions for many scenarios and numerical solutions
follow quite easily.

Existing dynamic programming methods to optimizing trading costs and execution scheduling are of
limited use to practitioners and traders since they do not provide a way for them to understand how their

actions at each stage would affect the price (as opposed to the combined effect of everyone else or the market)

10



and thereby pointing out specific aspects of the system that they can hope to influence. Hence, we start with
the benchmark dynamic programming problem and modify the reward function in the Bellman equation to

suit our innovation.

3.1 Notation for Optimal Trading using a Dynamic Programming Approach

o S, the total number of shares that need to be traded.
e T, the total duration of trading.
e N, the number of trading intervals.

o 7 =T/N, the length of each trading interval. We assume the time intervals are of the same duration,

but this can be relaxed quite easily. In continuous time, this becomes, N — co, 7 — 0.
e The time then becomes divided into discrete intervals, tx = k7, k =0,...,N.
o For simplicity, let time be measured in unit intervals giving, t = 1,2,...,7T.
e S}, the number of shares acquired in period t at price P;.

e Py can be any reference price or benchmark used to measure the slippage. It is generally taken to be
the arrival price or the price at which the portfolio manager would like to complete the purchase of the

portfolio.

¢ Our objective is to formulate a trading trajectory, or a list of total pending shares, Wy, ..., W, 1. Here,
W, is the number of units that we still need to trade at time ¢t. This would mean, W; = S and
Wr1 = 0 implies that S must be executed by period T’ (we note this as an assumption that there will
be no unexecuted shares once the total time duration is completed; this would mean that the trading
schedule has to be determined to satisfy the constraint that there are no shares left unexecuted at the
end of the total trading duration). Clearly, S = i S;. This can equivalently be represented by the list
of executions completed, S, ..., Sr. Here, W, :]T/Il/t_l — Si_1 or S;_1 = Wi_1 — W; is the number of
units traded between times ¢ — 1 and ¢ at price P,_;. That is we go from W;_; unexecuted shares at
time period ¢t — 1 to W; remaining shares at time ¢ by filling S;_; shares at price P,_1.W; and S; are
related as below.

t

W= 35—
J

1

(]

T
S, =38  t=1,..T
1 j=t

11



3.2 Benchmark Dynamic Programming Model

This is the simplest scenario where the trader would try to minimize the overall acquisition value of his
holdings. This is also the benchmark scenario in (Bertsimas & Lo 1998). In this case, securities are being
bought. It is then logical to set a no sales constraint when the objective is to buy securities. The baseline

objective function and constraints are written as,

T
in £/ S P,
?3915}1 1Lz_;tt

T
> 8 =8,85>0 Wy =8 Wry =0, Wy=W,_1— 81
t=1

The law of motion of price, P; for the buy scenario can be written as,
Po=P_1+0S +¢,0>0,E[e|S;,P,_1]=0

et ~ N (0,02) = Zero Mean IID (Independent Identically Distributed) random shock or white noise

We also follow the convention that the shares are positive when we buy and negative when we sell. The law

of motion of price, P; for the sell scenario then becomes,
P,=P_1—0S;+¢,0>0,E[e[S,P—1]=0

This price evolution and convention for the buy and sell scenarios ensures that the buyer and the seller have
the same price. A trade happens only when the buyer and seller agree upon the price and they both face
the same shock in this case. In the rest of the discussion we only consider the price evolution for the buy
scenario since this treatment applies with simple modifications when securities are sold.

The law of motion includes two distinct components: the dynamics of P; in the absence of our trade, (the
trades of other may be causing prices to fluctuate) and the impact that our trade of S; shares has on the
execution price P;. This simple price change relationship assumes that the former component is given by an
arithmetic random walk and the latter component is a linear function of trade size so that a purchase of S;
shares may be executed at the prevailing price plus an impact premium of 6.S;. Here, 6 captures the effect of
transaction size on the price. In the absence of this transaction, the price process evolves as a pure arithmetic
random walk. This then implies that from any participants view, the sum of all the price movements or the
new price levels established by all other participants evolves as a random walk. For simplicity, we ignore the
no sales constraint, S; > 0.

The Bellman equation is based on the observation that a solution or optimal control {S}, S5, ..., S} must

12



also be optimal for the remaining program at every intermediate time ¢. That is, for every ¢, 1 <t < T
the sequence {S;", SEity e S}} must still be optimal for the remaining program Ej [Zgzt PkSk] . The below

relates the optimal value of the objective function in period ¢ to its optimal value in period ¢t + 1 :

Vi (Po1, W) = ?qull}} Ey [PS; + Vig1 (P, Wig1)]

3.3 Terminology and High-level Mathematical Expressions

We now introduce some terminology used throughout the discussion.

1. Total Slippage - The overall price move on the security during the order duration. This is also a proxy
for the implementation shortfall (Perold 1988 and Treynor 1981). It is worth mentioning that there are
many similar metrics used by various practitioners and this concept gets used in situations for which it is
not the best suited (Yegerman and Gillula 2014). While the usefulness of the Implementation Shortfall,
or slippage, as a measure to understand the price shortfalls that can arise between constructing a
portfolio and while implementing it, is not to be debated, slippage need to be supplemented with more
granular metrics when used in situations where the effectiveness of algorithms or the availability of

liquidity need to be gauged.

2. Market Impact (MI) - The price moves caused by the executions that comprise the order under consid-
eration. In short, the MI is a proxy for the impact on the price from the liquidity demands of an order.
This metric is generally negative (by using a convention to show it as a cost; below we consider it as
positive quantity for simplicity) or zero since in most cases, the best impact we can have is usually no

impact.

3. Market Timing - The price moves that happen due to the combined effect of all the other market

participants during the order duration.

4. Market Impact Estimate (MIE) - This is the estimate of the Market Impact, explained in point two
above, based on recent market conditions. The MIE calculation is the result of a simulation which
considers the number of executions required to fill an order and the price moves encountered while
filling this order, depending on the market micro-structure as captured by the trading volume and the
price probability distribution including upticks and down-ticks over the past few days. This simulation
can be controlled with certain parameters that dictate the liquidity demanded on the order, the style of
trading, order duration, market conditions as reflected by start of trading and end of trading times. In
short, the MIE is an estimated proxy for the impact on the price from the liquidity demands of an order.

Such an approach holds the philosophical viewpoint that making smaller predictions and considering
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their combined effect would result in lesser variance as opposed to making a large prediction; estimations
done over a day as compared to estimations over a month, say. A geometrical intuition would be that
fitting more lines (or curves) over a set of points would reduce the overall error as compared to fitting
lesser number of lines (or curves) over the same set of points. When combining the results of predictions,
of course, we have to be mindful of the errors of errors, which can get compounded and lead the results
astray, and hence, empirical tests need to be done to verify the suitability of such a technique for the

particular situation.

5. Market Timing Estimate (MTE) - This is the estimate of the Market Timing, explained in point three
above, based on recent market conditions. The MTE calculation follows from the price volatility and
hence longer the duration, we can expect the timing to be higher. It is helpful to consider an upper
bound and lower bound for the MTE or in other words a range for the MTE for the duration of trading

over which we are estimating the market impact.

6. All these variables are measured in basis points to facilitate ease of comparison and aggregation across
different groups. It is possible to measure these in cents per share and also in dollar value or other

currency terms.

7. The following equations, expressed in simple mathematical terms to facilitate easier understanding,

govern the relationships between the variables mentioned above.

Total Slippage = Market Impact + Market Timing

{Total Price Slippage = Your Price Impact + Price Impact From Everyone Else (Price Drift)}

Market Impact Estimate = Market Impact Prediction = f (Execution Size, Liquidity Demand)

Execution Size = g(Execution Parameters, Market Conditions)

Liquidity Demand = h(Execution Parameters, Market Conditions)

Execution Parameters <->vector comprising (Order Size, Security, Side, Trading Style, Timing Decisions)

Market Conditions <-> vector comprising (Price Movement, Volume Changes, Information Set)

Here, f, g, h are functions. We could impose concavity conditions on these functions, but arguably, similar
results are obtained by assuming no such restrictions and fitting linear or non-linear regression coefficients,
which could be non-concave or even discontinuous allowing for jumps in prices and volumes. The specific
functional forms used could vary across different groups of securities or even across individual securities or
even across different time periods for the same security. The crucial aspect of any such estimation is the
comparison with the costs on real orders, as outlined earlier. Simpler modes are generally more helpful in

interpreting the results and for updating the model parameters. (Hamilton 1994) and (Gujarati 1995) are
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classic texts on econometric methods and time series analysis that accentuate the need for parsimonious

models.

3.4 The Implementation Shortfall

As a refresher, the total slippage or implementation shortfall is derived below with the understanding
that we need to use the Expectation operator when we are working with estimates or future prices. (Kissell

2006) provides more details including the formula where the portfolio may be partly executed.

Paper Return = SPr — SP,

t=1

T
Real Portfolio Return = SPp — <Z StPt>

Implementation Shortfall = Paper Return — Real Portfolio Return

T
(Z sm) — 5Py
t=1

This can be written as,

T
Implementation Shortfall = <Z StPt> — SP,
t=1
T T
= <Z stPt> - Py (Z St)
t=1 t=1
= 51P1+SQP2+...+STPT—51PO—SQP()—...—STPO

= Sl (Pl — Po) + SQ (P2 — Po) 4+ ...+ ST (PT — Po)

Implementation Shortfall = S; (P, — Fy) +
So(Po— Py)+ Sy (P — Py) +
S3(P3— P2) + S5 (P — P1) + S5 (Pr— Po) +
4

St (PT — PTfl) + St (PTfl — PT,Q) + ..+ St (P1 — PO)

The innovation we introduce would incorporate our earlier discussion about breaking the total impact or
slippage, Implementation Shortfall, into the part from the participants own decision process, Market Impact,

and the part from the decision process of all other participants, Market Timing. This Market Impact, would
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capture the actions of the participant, since at each stage the penalty a participant incurs should only be
the price jump caused by their own trades and that is what any participant can hope to minimize. A subtle
point is that the Market Impact portion need only be added up when new price levels are established. If the
price moves down and moves back up (after having gone up once earlier and having been already counted
in the Impact), we need not consider the later moves in the Market Impact (and hence implicitly left out
from the Market Timing as well). This alternate measure would only account for the net move in the prices
but would not show the full extent of aggressiveness and the push and pull between market participants and
hence is not considered here, though it can be useful to know and can be easily incorporated while running
simulations. We discuss two formulations of our measure of the Market Impact in the next two subsections.

The reason for calling them simple and complex will become apparent as we continue the discussion.

3.5 Market Impact Simple Formulation

The simple market impact formulation does not consider the impact of the new price level established on
all the future trades that are yet to be done. From a theoretical perspective it is useful to study this since
it provides a closed form solution and illustrates the immense practical application of separating impact and
timing. This approach can be a useful aid in markets that are clearly not trending and where the order size
is relatively small compared to the overall volume traded, ensuring that any new price level established does
not linger on for too long and prices gets reestablished due to the trades of other participants. This property
is akin to checking that shocks to the system do not take long to dissipate and equilibrium levels (or rather

new pseudo equilibrium levels) are restored quickly. Our measure of the Market Impact then becomes,

T
Market Impact = Z {max [(P; — P;—1),0] S¢}
t=1
The Market Timing is then given by,
Market Timing = Implementation Shortfall — Market Impact
T B T
= <Z stpt> — 5Py = {max[(P — P,_1),0] S}
t=1 t=1

For illustration, let us consider some examples,

1. When all the successive price moves are above their corresponding previous price, that is max [(P; — Pi—1),0] =

(P, — Pi_1), we have

T
Market Impact = Z {max [(P, — P;—1),0] S;}
t=1
= Sl(Pl—P0)+SQ(P2—P1)+53(P3—P2)+ +ST(PT—PT_1)
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Market Timing = Implementation Shortfall — Market Impact
T
= (ZStPt> —SPo—Sl(Pl—Po)—SQ(PQ—Pl)—Sg(Pg—PQ)— _ST(PT_PT—I)
t=1
= S1Py+ SoP; + S3P + ... +STPT,1—§P0

= Sy (PA—PFy)+S3(Po—P)+ ... +S7(Pr—1—P)

2. Some of the successive prices are below their corresponding previous price, let us say, (P, < P;) and (P; < Ps),

we have
T
Market Impact = Z {max [(P; — P;—1),0] S:}
t=1
= 5 (Pl — P()) + 5o (0) + S3 (0) + ... + 57 (PT - PT,1)
Market Timing = Implementation Shortfall — Market Impact

T

= (Zsm) — 8Py — Sy (P — Py) — S5 (0) — S3(0) — ... —Sr(Pr—Pr_1)
t=1

= SoPy+ S3P3+ 51 Py + S4P5+ S5Py + ... +STPT_17§P0

= So(Py—Py)+ S3(P3s—Py)+ Sy (P3s — Py) + S5 (Py — Po) + ... +S7(Pr—1—F)

3.6 Market Impact Complex Formulation

Another measure of the Market Impact can be formulated as below which represents the idea that when a
participant seeks liquidity and establishes a new price level, all the pending shares or the unexecuted program
is affected by this new price level. This is a more realistic approach since the action now will explicitly affect

the shares that are not yet executed. This measure can be written as,

T
Market Impact = Z {max [(P; — P;—1),0] W}
t=1
The Market Timing is then given by,
Market Timing = Implementation Shortfall — Market Impact
T B T
= <Z StPt> — 8Py =Y {max[(P, - P,_1),0| W}
t=1 =1

For illustration, let us consider some examples,
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1. When all the successive price moves are above their corresponding previous price, that is max [(P;, — P;—1),0] =

(P; — Pi_1), we have

Market Impact

Market Timing

— Z {max [(P; — P;_1),0] W;}

t=1

= Wi (PL—Py)+Wa(Po—P)+W3(Ps—Py)+ ... + Wy (Pp—Pp_q)

Implementation Shortfall — Market Impact

T
(Z StPt> — SPy— Wy (P, — Py) = Wa (Py— P) — W3 (Ps — Py) — ... — Wy (Pr— Pr_)
t=1

T
[Z (Wy — Wysr) Pi| — WPy — Wy (PL — Py)

t=1

—W2 (P2 — Pl) — W3 (P3 — PQ) — .. — WT (PT — PT—l)

(Wl—WQ)Pl+(W2—Wg)P2+...+(WT—WT+1)PT
—Wlpo—Wl(Pl—Po)—Wg(PQ—Pl)—W3(P3—P2)— _WT(PT_PT—I)

0

2. Some of the successive prices are below their corresponding previous price, let us say, (P, < P;) and (P; < Ps),

we have

T
Market Impact = Z {max [(P, — P;—1),0] W;}

Market Timing

t=1

= Wi(P1—P)+Wa(0)+Ws3(0)+ ... +Wr(Pr— Pr_1)

Implementation Shortfall — Market Impact

(Z stpt> — SPy— Wy (P — Py) — W5 (0) = W5 (0) — ... — Wy (Pp— Pr_y)
t=1

T
lz (Wi = Wig1) P| — WiPy — Wi (PL— Py)

t=1

W, (0) — W5 (0) — ... — Wy (Pr— Pr_y)

(W1 —Wo) P+ (Wy —W3)Po+ ...+ (Wp — Wpiq) Pr
—WiPy — Wy (P1 - Po) — Wy (0) — W3 (0) — .. —Wrp (PT — PTfl)
—WoP, +WoPy — W3Ps + W3 P

Wo (P — Py) + W3 (P3 — Py)
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3.7 Trading Costs as a Zero Sum Game

A formal study of trading costs in the financial markets using the tools of game theory can lead to many
interesting conclusions (Fama 1970 is a discussion of fair games and efficient markets; Kyle 1985, Foster &
Viswanathan 1990 solve for the Nash equilibrium when trading is viewed as a game between market makers
and traders; Hill 1990 considers transaction costs using a game theoretic model with opportunistic behavior;
Klemperer 2004 is an overview of how auctions can explain financial crashes and trading frenzies). Even
without a set up specific to game theory (that is the notation, terminology and related paraphernalia, which
we will pursue in a later game theory only paper), one of the results we obtain, though fairly evident but
perhaps surprising given the extent of trading that takes place in today’s markets is that, in any given time
period the sum of market impact and the sum of market timing across all market participants equals zero.

This is immediately obvious in the case that there are only two participants (one is the buyer, the other
is the seller and without two participants we do not have a market or a trade) and there is only one single
interval, since negative implementation shortfall for the buyer shows up as positive implementation shortfall
for the seller; the impact for the buyer shows up as timing for the seller and vice versa. We note that the total
amount bought in any interval is equal to the total amount sold. When there are more than two participants
and multiple intervals, if we consider the actions in each interval and add up the impact and timing figures
across everyone, it shows the zero sum nature of the trading game (For different types of zero sum games
and methods of solving them, see Brown 1951; Gale, Kuhn & Tucker 1951; Von Neumann & Morgenstern
1953; Von Neumann 1954; Rapoport 1973; Crawford 1974; Laraki & Solan 2005; Hamadéne 2006); (Bodie &
Taggart 1978; Bell & Cover 1980; Turnbull 1987; Hill 2006; Chirinko & Wilson 2008 consider zero sum games

in the financial context). The result holds for both the simple and complex formulations of market impact.

Theorem 1. Trading costs are a zero sum game. The sum of market impact and market timing across all

participants, in any given time interval, should equal zero.

Total Market Impact + Total Market Timing = 0

Proof. See Appendix
O

Though we refrain from a longer discussion for the sake of brevity; it should be immediately apparent that
the zero sum nature of trading costs is applicable outside the financial markets, to all manner of trades within
international / intra-national finance and the exchange of all types of goods and services. Another aspect

we point out is the difference in the extent of how much timing and impact might vary between financial
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markets and trading in other products. The relative ease with which products can be liquidated and / or the

extent to which they are either consumption or investment goods, affects this property (Kashyap 2014).

4 Alternative and Practical Dynamic Market Impact Model

We discuss the benchmark law of motion of prices while optimizing the simple and complex market impact
formulations in this section. More complex extensions of the law of motion of prices are considered in section

6]

4.1 Simple Formulation of the Benchmark Law of Price Motion

Incorporating the Simple Market Impact formulation from section the benchmark objective function

and the Bellman equation from section can be modified as,

T
E%ir}l E Z {max [(P; — P;—1),0] S:}
¢ t=1

> 8 =8,8>0Wi=8 Wrp1=0, Wy=W;_1 -S4
t=1

Pt:Pt_1+95t+€t,9>0,E[Et|st,Pt_1]:O, EtNN(O,O'§>

The Bellman equation then becomes,
Vi (Po1, W) = ?nglr}l Ey [max {(P; — Pi—1),0} St + Vi1 (P, Wiga)]

One additional constraint that is necessary is to restrict the amount of shares available for
trading in any time period, when the price in that time period drops in comparison to the
previous time period. The algorithm in section[5] shows how these constrainst can be set. This
is a practical consideration, since a drop in price is impact for the sellers and timing for
the buyers (as a reminder, we are buyers). Hence when the price decreases in comparison to
the previous time period, the amount of shares or liquidity is limited and the seller decides
how much to make available. When prices are rising, we can justify not having that criteria,
since the buyer can bid up the price and decide how much impact we want to incur. A more
thorough approach would ensure that the liquidity follows a process of its own and captures
this dynamic of sellers and buyers being able to prop the prices from falling further or rising
higher respectively. In the extension we consider in section some of these aspects can be

factored in.
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By starting at the end, (time 7') and applying the modified Bellman equation and the law of motion for
P,, the relation between pending and executed shares, and the boundary conditions recursively, the optimal
control can be derived as functions of the state variables that characterize the information that the investor
must have to make his decision in each period. In particular, the optimal value function, Vi (---), as a

function of the two state variables Pr_; and Wy is given by,
VT (PT—17 WT) = %I% ET [max{(PT — PT—l) 70} ST]
T

Here, the remaining shares Wr,; must be zero since there is no choice but to execute all the remaining

shares, Wr. We then have the optimal trade size, S5 = Wy and an expression for Vr as,

Vr (PTfl, WT) = FEr [max {(GWT + ET) s 0} WT]

Proposition 1. The value function for the last but one time period is convexr and can be written as,

Vi1 (Pr—o,Wp_1) = {min [ST—10:9 (§ST-1) + (Wpr_1 — S7—1) 00 {{ (Wpr_1 — S7-1)}]

Sr_1}

Here, Y (u) =u+ ¢ (u) /@ (u) , { = —,

O¢

Also, ¢ and ® are the standard mormal Probability Density Function, PDF, and Cumulative Distribution

Function CDF, respectively.

Proof. See Appendix [TT1.2]
O

Figure [3] illustrates the shape of some combinations of the distribution functions that we are working

with. For the value function we have, the condition for convexity can be derived as 6 > (30./4).

Proposition 2. The number of shares to be executed in each time period follows a linear law. S;_; =
Wx_1/2, ... Sh g 1 =Wr_g_1/(K+2),55_x =Wr_g/(K+1) and the corresponding value func-

tions are,
0 Wr_kx_1
0 Wr_g_1 ¢(E (K+2) )

0. (K+2 0 Wr_r1
o (K +2) ‘I’(at <§<+K2))

Vg1 (Pr—gx—2,Wr_x_-1) =0Wr_g_1
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Proof. This is shown using induction in Appendix [T1.3]
O

We can see that a minimum exists at each stage. The simple solution follows from the linear rule where
the price impact 6.5; does not depend on either the prevailing price, P;_1, or the size of the unexecuted order
W, and hence the price impact function is the same in each period and independent from one period to the
next. It is easily shown that, S = S5 = --- = S% = §/T. This simply means that the best execution
strategy is simply to divide the total order or the total shares S into T equal amounts and trade them at
regular intervals. (Bertsimas & Lo 1998) has a more detailed discussion. Supposing a closed form solution
was absent, we could approximate the solution (numerically solved) using S4_; ~ {o + & Wr—1+ &2 (WT_1)2
or Sk _, = & (WT_l)&. We can also set S5_; =~ wi (Wr_1) using any well behaved (continuous and
differentiable) function, wy. We could also include the last known price, P;_1, or other state variables into
the above approximation. We discuss this technique in detail including numerical examples in section
This numerical approximation approach is simple to implement and lends itself easily to solutions even in
the more complex laws of motion to follow in section [6}

Going forward, to lighten the notion, we will drop the * superscript on the number of shares to be executed

in each time period, S}, where there is less likelihood of confusion.

4.2 Complex Formulation of the Benchmark Law of Price Motion

Incorporating the Complex Market Impact formulation from the earlier section [3.6] the objective function

and the Bellman equation from section [3.2] can be modified as,

T
?éi? E; Z {max [(P; — P,_1),0] W;}
¢ t=1

T
ZSt:575t207W1:§, Wria=0, We=W;_1 -S4 1
t=1

Pt:Pt71+05t+5t ,0>0,E[5t|5t,Pt,1]:0, €tNN(O,O'3)

The Bellman equation then becomes,

Vi (Pi—1, Wy) = ?;}T}l Ey [max {(P; — Pi—1) ,0} Wy + Vi1 (P, Wig)]
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The optimal value function, Vi (---), as a function of the two state variables Pr_; and Wy is given by,
VT (PT—17 WT) = qul% ET [Inax {(PT — PT—l) ) 0} WT}
T

Here, the remaining shares Wy must be zero since there is no choice but to execute all the remaining

shares, Wr. We then have the optimal trade size, S5 = Wp and an expression for Vr as,

VT (PTfl, WT) = ET [max {(QWT + ET) 5 0} WT]

Proposition 3. The value function for the last but one time period is a convex function with a unique
minimum, since it is the sum of the portions shown to be convexr above (Proposition , another convex

function and a linear component.

Vr—1 (Pr—o,Wp_1) = {éﬂin} (Wr_10:¢ (EST-1) + Wr—1 — Sr—1) 09 {€ Wr_1 — S1-1)}]

0
Here, ¥ (u) =u+¢(u) /P (u) ; {= P Note that, Wr—1 = Sp—1+ Wr

€

The number of shares to be executed in subsequent time periods and the corresponding value function are

obtained by solving,

EWr1 = Sr-1)° ¢ (E{Wr_1 — Sr1}) - (E{Wr_1 = Sr_a} B
O (E{Wr_1 — Sr_1}) + (W1 = Sr-1) [ O (E{Wr_1 —Sr_1} ] B

)

)

1o (E{Wr_1 —Sr—1})  EWr_1Sr—16(£S7-1) ®(€ST-1)

2V =S e g (W —5r1)) T @ (€57 ) +WT1[ @ (€57 n]

Wr_1 +

Proof. See Appendix [T1.4]

O

The simple rule established earlier, St_1 = Wr_1/2, no longer applies here and we need numerical
solutions at each stage. The complexity that gets included in this scenario, when we consider the rest of
the unexecuted program into the market impact function, can be seen from this expression. We illustrate

numerical techniques for obtaining optimal executions in the next section .
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5 Numerical Framework for Optimal Execution

Below we develop a numerical framework that can provide optimal executions for any law of motion
of prices. We specifically illustrate how we can solve the formulations from section 4 with this numerical
technique. It should shortly become clear how this solution technique can be applied under any scenario
of price changes including multiple sources of uncertainty. The central idea is similar to the American
option pricing methodology (Longstaff & Schwartz 2001) that approximates the ex post realized payoffs from
continuation on functions of the values of the state variables. In our case, we use least squares to approximate
the conditional expectation of the number of shares to execute as a function of the state variables at each

stage. The following points capture a high level essence of the algorithm.

5.1 Optimal Execution Algorithm

1. We create a matrix with the number of columns equal to the number of time periods and number of rows
equal to the number of different price paths we desire (total number of simulations we are running).
The first column in the matrix corresponds to the starting price, Py and the total number of shares to

execute, W1.

2. We then randomly sample the number of shares to execute during the next time period from a uniform
distribution. During this process, we can enforce constraints on the minimum or maximum amounts
we wish to execute during each time period by including them as the lower and upper limits of the

uniform distribution.

3. The number of shares to execute, the price at the start of the time period and the price innovation sam-
pled from another suitable distribution (g; ~ N (0,02) in our case) incorporated into the corresponding
law of motion give us the number of shares that still remain to be executed after the end of this time
period and the starting price point for the next time period. Any additional sources of uncertainty can

be included to obtain the next price level.

4. Continuing this iteratively, we obtain a matrix where each node (row and column) represents a different

scenario of price and remaining number of shares to execute before the start of the next time period.

5. Starting from the last time period, at each node, we compute the optimal number of shares to execute
during that time period and later ones with complete knowledge of the innovations (e;) that unfold
on that path, using well-known optimization techniques. For the complex impact function, we use the
solnp package in R (Ghalanos, Theussl & Ghalanos 2012; Ye 1988); for the simple impact function,
we allocate the remaining shares to the remaining time periods based on whether the corresponding

innovations are negative and how negative they are.
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(a)

Considering the below example of obtaining the optimal executions when we are minimizing the

complex impact function under the benchmark law of price motion, we write the objective function

as,
t=T i=T
?éil}l Z max (6S; + &¢,0) Z S;
=1 j=t

Here, ZE;T Sy = Wy ; S;,Wp > 0 and 6,4 € R, that is they are real numbers. Note that,

Pt — Pt—l = QSt + E¢
As an example, for T = 3 we get,

(s Héins N [max (051 + €1,0) (S1 + Sz + S3) + max (0S3 + €2,0) (S2 + S3) + max (653 + £3,0) (S3)]

For the last time period, the optimal number of shares, S5 = S3. When we are time period,

T = 2,we optimize Ss, S3 using the Rsolnp library such that the following function is minimized,

{énlsr'l} [max (352 + €9, 0) (52 + 53) + max (053 + €3, 0) (53)}

Here, ZZ‘;’ Sy = Wo ; Wy = W1 —S1; W5 would have a different value on each price path simulation

or for each row in our matrix.

Considering the below example of obtaining the optimal executions when we are minimizing the
simple impact function under the benchmark law of price motion, we write the objective function
as,

t=T

I{Iéil}l Z {max (65; +€¢,0) (S¢)}
R =

Here, ZET Sy = Wy ; S;,W7 > 0 and 0,e; € R, that is they are real numbers. Note that,
Pt — Pt,1 = GSt + &¢

As an example, for T = 3 we get,

s rréins , [max (051 + €1,0) (S1) + max (0Ss + £2,0) (S2) + max (653 + €3,0) (S3)]
1,°02,°3

For the last time period, the optimal number of shares, S5 = S3. When we are time period,

T = 2,we optimize So, S3 such that the following function is minimized,

{;pi;}} [max (653 + €2,0) (S2) + max (0S5 + £3,0) (S3)]
2,03
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Here, Zizg Sy = Wy 3 Wo = Wy — S1; Wy would have a different value on each price path
simulation or for each row in our matrix. The remaining shares W5 are distributed to time periods
that have negative innovations, starting with earlier time periods, until the execution size times
the impact parameter 6 plus the innovation equals zero for a particular time period. When this
condition is satisfied, we incur zero impact {651 +e1 =0 = P, — P,_; = 0}. After the execution
size times the impact parameter 6 plus the innovation equals zero for all time periods, any further
leftover shares are allocated, while giving precedence to earlier time periods and then allocating
to subsequent time periods, up-to the maximum execution limit for each time period, since the
execution of these shares will cause an equal jump up in the prices (having an equal impact in the

objective function) and it is better to execute sooner rather than later.

6. We then run a regression across all the rows in the matrix (this is a cross sectional regression) with the
independent variables as the price and the number of shares remaining to be executed before the time
period starts and the optimal number of shares to execute during that time period as the dependent

variable.

o We use a regression model such as the one below. It should be clear that we can extend this to

purely non-linear regressions or a combination of linear and non-linear components.
E[S; Wy Pi—1] = Bo + BiWi + BoWE + BsPy—1 + BaPPy + BsWi Py

For T = 2,
E[Sy|Wa, Pi] = Bo + B1Wa + BoW3 + B3Py + B PP + BsWo Py

7. Likewise, we continue backwards in time and obtain regression co-efficients for each time period. The
regression co-efficients can then be used to calculate the optimal number of shares before the start of
each time period. At each stage, we adjust the number of shares remaining before the time period
starts based on the difference between the simulated number of shares to execute and the conditional
expected value of the number shares to execute as given by the above regression equation. For T' = 2,

this adjusted number of remaining shares, W, is given by,

Wy = 83+ (So — B[Sy [Wa, P1])

5.2 Sample Results with Mean-Variance of Execution Costs

For the complex impact formulation, the table in (Figure 4 gives the regression coefficients when the number

of time periods, T' = 20 and the total number of shares to execute is 100, 000. Starting with the initial time
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period in the first row, the optimal executions, the price path and other parameters are also shown. All
the parameter values are taken to be the same as the values in (Bertsimas & Lo 1998), to facilitate a
proper comparison. (Figure [5)) shows the optimal execution schedules under different levels of minimum
and maximum number of shares to execute during each time period and different number of price paths or
simulation counts.

(Figure @ compares the average and wvariance of the total impact costs of our numerical
methodology with the benchmark case in (Bertsimas € Lo 1998; also termed the naive strategy),
where the solution we get is to execute equal amount of shares in each time period. We report
the mean and variance over a simulation sample of 50,000 price paths. We see that the
benchmark case has a mean of around 5,262,583 which is comparable to the average execution
cost of 5,264,706 using the complex formulation; but the variance is significantly lower using
our methodology (769,801,363 in our case versus 1,120,457,643 in the benchmark model).
(Figure @ also reports the multiple of ten percentile values for the executions costs. (Figure
@ shows the histograms of the total costs under the two techniques (the top histogram is for
the complex formulation). In addition, our methods are more realistic and adaptive, since
the execution amounts change every-time we use it, as the market moves and as our trading
progresses. Tailoring it to include additional state variables and capture other sources of
uncertainty is relatively straightforward.

Lastly to provide a better understanding of how execution costs change with changes in the different
parameters, in (Figure |8) we provide the average of the total execution costs, the simple impact costs, the
complex impact costs and the market timing costs across different parameter values, when we are optimizing
the complex formulation of the market impact. We impose non-negativity constraints on the execution
amounts while calculating the regression co-efficient; later when we use the regression coefficients to calculate
execution costs, we remove this restriction for some iterations; this parameter is captured as the maximum
and minimum number of shares we can trade in any given time period.

The following values of the parameters are used in the computations: we vary the volatility of the
stock price o = {0.125,0.25,0.30,0.35, 0.40,0.45, 0.50, 0.55, 0.60, 0.65,0.70,0.75}, the impact parameter, § =
{2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0, 7.5}, the maximum and minimum number of shares we can execute
in any given time period, i.e, the liquidity, {6666, 13332, 19998, 26664, 3333} and {0, —10,000}, and the num-
ber of simulations, {50000,20000, 10000, 3000, 2000,1000}. This gives a matrix of summary statistics with
around 93 different combinations for which we calculate the regression coefficients, the simple market impact
cost, the complex market impact cost and the total execution cost. It is immediately obvious that increasing
the impact parameter, 6, leads to an increase in the total executions costs. The increase in the price volatility

and the liquidity in each time period do not show such a clear pattern and further investigation is warranted.
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But we can expect that the greater uncertainty due to higher price volatility and lack of liquidity, would
force participants to trade greater amounts earlier in the trading horizon or as liquidity becomes available.

To calculate the regression coefficients in the quickest possible time, it would be helpful to build a decent
amount of computing infrastructure. Since each price path can be developed independently and the only
dependence across price paths is while doing the cross-sectional regressions, all the price paths and the
optimization at each time period can be done using parallel processing technology. If there are 20 time
periods and 1000 price paths, we would need to perform 20,000 Rsolnp optimization calls to compute all
the regression coefficients for the complex impact formulation. This is the most time consuming portion
of the algorithm and it is highly sensitive to the initial values provided for the routine. The calculation
time increases significantly with the number of price paths and time periods; this increase is linear with the
number of price paths but it can be more costly to perform the Rsolnp optimizations when the number of
time periods increase. To make the calculation engine more robust we also build rudimentary intelligence,
such that in case of any interruptions the system will revert back and resume the calculations from the last
clean state that was reached. We ran our simulations on an Intel four core windows 10 machine with 4.00
Gigabytes RAM and 2.4 Gigahertz processor speed. In the summary statistics below, we provide the time it
takes to calculate all the co-efficients.

To reduce the number of calculations, when we are looking to run optimal executions across hundreds
of different securities, we could create groups of securities based on similarties in starting prices, volatilities
and other paremeters and compute regression co-efficients for each group separately. Optimizing the simple
impact formulation takes considerably less time. The regression co-efficients, optimal executions, executions
costs and run times are summarized in (Figures EI, . Another alternative to optimizing the complex
impact function (instead of the Rsolnp optimization) is to perform a one step ahead optimization. To
elaborate on this, at each step, we only look at whether the price went up or down and execute accordingly
with full foresight of only one time period. We then run the cross-sectional regressions based on the optimal
shares with just one time period look ahead. The regression co-efficients, optimal executions, executions costs
and run times are summarized in (Figures . It would be prudent to re-calibrate the regression

co-efficients periodically across all three formulations.

5.3 Actual Trading Costs Attribution

The following diagram (Figure illustrates the distribution of actual trading costs (These metrics are
for live institutional trades from a global sample measured in basis points on the y axis; the x-axis has the
costs for two months: April and May 2015; the size of the bubble represents the trade size) based on the our
attribution methodology. (Kashyap 2015, 2016) are empirical examples of applying the above methodology

to recent market events, wherein, Mincer Zarnowitz type regressions (Mincer & Zarnowitz 1969) are run
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to establish the accuracy of the estimates. These studies demonstrate the effectiveness of this approach in

helping us better understand and analyze real life trading situations.

6 Extensions to the Benchmark Law of Price Motion

6.1 Law of Price Motion with Additional Source of Uncertainty
6.1.1 Simple Formulation

The law of price motion can be changed to include an additional source of uncertainty, X;, which could
represent changing market conditions or private information about the security. We assume that this state
variable X4, is serially-correlated and v captures its sensitivity to the price movements. Incorporating this,

the objective function and the Bellman equation become,

T

I{%iI; B Z {max [(P; — P;—1),0] S:}
¢ t=1

zT:St =8,5>20,W1 =5, Wrpa =0, Wy =W,_1 — S
t=1
Po=P_14+60S;+7vXi+¢e,0>0,E[e ]S, P—1] =0
Xt =pXi1+m, pe(—1,1) = AR(1) Process
ee~N (O7 0?) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
m~N (0, 072,) = Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vi (Pro1, X1, Wh) = ?}91? Ey [max {(P; — Pi—1),0} St + Vigr (Pr, Xy, Wiga)]

By starting at the end, (time T') we have,
VT (PTfl, XT,1, WT) = J{ISHH} ET [max{(PT — PT,1) ,0} ST]
T
Since W4 is zero, we have the optimal trade size, S = Wr and an expression for Vr as,

Vr (Pr—1, X7—1,Wr) = Ep [max {(0Wr +er +vXr),0} Wr]
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Proposition 4. The number of shares to be executed in each time period follows a linear law. Sp_1 =

Wr_1/2 ... Sr_x—1=Wr_g_1/(K +2) and the corresponding value function is
OWr_k_1+(K+2)ax+1

0 2 (K+2)B )

Vr_k—1(Pr—x—2, Xr—x—2, Wr_g_1) = WWTfK—l +agaWr_k—1+ BWr_k_1 o (9WT_K_1+(K+2)aK+1)
(K+2)B
Here, agi1 = vpXr—K_2, B = \/72072; +o02
Proof. See Appendix
]

The simple rule established earlier, Sp_1 = Wr_1/2, suffices even here, with a similar reasoning that
follows from the independence of the price impact from either the prevailing price or the size of the unexecuted

order.

6.1.2 Complex Formulation

Incorporating this additional source of uncertainty into the complex market impact formulation, the

objective function and the Bellman equation become,

T
?}gir; E; Z {max [(P; — P,—1),0] W;}

t=1

zT:St =85.,5>0,W1 =8 Wy =0, Wy=W;_1 —S;_4
t=1
Po=P_1+0S+~vX:+¢t,0 >0,E[e|S, Pi—1]=0
Xi=pXi—1+m, p€(—1,1) = AR(1) Process
ge~ N (O7 0?) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
n ~ N (O, 03) = Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vi (Pr—1, X410, Wh) = ?élf}} Ey (max {(P; — P;—1),0} Wi + Vg (P, X, Wiga)]
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By starting at the end, (time T') we have,
Ve (Pr—1,X7p_1,Wrp) = FSHT% Er [max {(Pr — Pr_1),0} Wr]
Since W4 is zero, we have the optimal trade size, S = Wp and an expression for Vr as,
Vr (Pr—1, Xr—1, Wr) = Er [max {(6Wr + er + 7 X7),0} Wr]

Proposition 5. The number of shares to be executed in each time period and the corresponding value function

are obtained by solving,

<9STB1+a> & <9ST;+O¢) & <GSTB1+OL)

& (M) o (M)

OWr_1+ BWr_1

™|

OWr_1— ST 1)+a)

2

e(WT 1= ST 1)+a)
—20 (Wpr_y — St —oz+ﬁ{
o (%
(

+9(WT_1 —ST_l) <G(WT—1_BST—1)+OC) ¢(9(WT 1 ﬁST 1)+Ot) O(Wp_1— ST 1)+Ot> o
B P (0(WT,173T,1)+a> O(Wr_1— ST 1 +Oé) -
B
Proof. See Appendix [IT1.6]
O
The simple rule established earlier, Sp—; = Wpr_1/2, no longer suffices here and we need numerical

solutions at each stage of the recursion.

6.2 Linear Percentage Law of Price Motion
6.2.1 Simple Formulation

A law of motion based on an arithmetic random walk has a positive probability of negative prices and it
also implies that the Market Impact has a permanent effect on the prices. The other issue is that Market
Impact as a percentage of the execution price is a decreasing function of the price level, which is counter-

factual. Hence we let the execution price be comprised of two components, a no-impact price Zst, and the
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price impact A;.

Pt:ﬁt+At

The no impact price is the price that would prevail in the absence of any market impact. An observable
proxy for this is the mid-point of the bid/offer spread. This is the natural price process and we set it to be
a Geometric Brownian Motion.

P, = P, P
By ~ N (up,0%) =1ID (Independent Identically Distributed) normal random variable

The price impact A; captures the effect of trade size on the transaction price including the portion of the
bid/offer spread. As a percentage of the no-impact price ]5t7 it is a linear function of the trade size S; and
X; where as before, X; is a proxy for private information or market conditions. The parameters 6 and -~y

measure the sensitivity of price impact to trade size and market conditions or private information.

At = (HSt =+ ’}/Xt) Pt

Xi=pXi1+m, pe(=1,1)
n ~ N (0, 0727) = Zero Mean IID (Independent Identically Distributed) random shock or white noise

The optimization problem and Bellman equation can be written as,

T
?éir}} E; Z {max [(P; — P;—1),0] S;}
¢ t=1

T
> 8 =8,85>0Wi=8 Wry =0, We=W;_1 -S4
=1
Vi(Po1, Xy, W) = ?}qlr}l Ey [max {(P; — Pi—1),0} S; + Vg1 (P, X¢, Wig1)]

By starting at the end, (time T') we have,
VT (PTfl, XT,1, WT) = F’Sllri ET [max{(PT — PT,1) ,0} ST]
T

Since W, is zero, we have the optimal trade size, S = Wr and an expression for Vr as,

Vi (Pr—1, Xp—1, W) = Er [max { (ﬁT (14 60Wr + 7 Xr) — PT_l) ,0} WT}

This involves a normal log-normal mixture and solutions are known for handling this distribution under
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certain circumstances (Clark 1973; Tauchen & Pitts 1983 ; Yang 2008).
Proposition 6. The value function is of the form, E[Y2|Ys > 0] where,
Y, = (]BT_1WT6BT + GW%IST_leBT + ’}/pXT_lﬁT_leeBT + "}/}ST_1WT€BTT]T — WTPT_1> . This can

be simplified further to,

E[(eXY + k)| (e*Y + k) > 0]

px+ox

>> (o (2] o)) ey o)

® ("5
<I>
[t ”‘} o[ P )

Here, X ~ N (,uX,JX) Y~N (,uy,oy) X and Y are independent. Also, k < 0

— k4 elrxtzok)

Proof. See Appendix
O

Clearly, the approach outlined in section [p]to use least squares to approximate the conditional expectation
as a function of the state variables at each stage can be easily applied. We can also use other numerical
techniques (Miranda & Fackler 2002) or approximations to the error function (Chiani, Dardari & Simon

2003).

6.2.2 Complex Formulation

The optimization problem and Bellman equation for the complex case can be written as,

FE P P, W,
I{%lfn 1 Z{max t— tl) ] t}

ZStZS,StZ(),Wl:S" Wrp=0, We=W;,_1 — Sy

t=1

Vi (Pic1, X1, Wy) = f{%lf]} Eymax {(P, — Pi—1),0} Wy + Vi1 (Pr, Xo, Wit)]
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By starting at the end, (time T') we have,
VT (PT—la XT—ly WT) = gl% ET [max {(PT — PT—l) ,O} WT]
T

Since W41 is zero, we have the optimal trade size, S = Wr and an expression for Vp can be arrived similar

to the simple formulation in Proposition [6]

6.3 Including Liquidity Constraints
6.3.1 Simple Formulation

A practical limitation that arises when trading is the extent of liquidity that is available at any point in
time. This becomes a restriction on the amount of shares tradable in any given interval. Volume can be
observed and estimated with a reasonable degree of accuracy. Hence, any measure linking volume to trading
costs would be a very practical device. There is a voluminous literature that derives theoretical models
and looks at the empirical relationship between volume and prices. (Karpoff 1986; 1987; Gallant, Rossi &
Tauchen 1992; Campbell, Grossman & Wang 1993; Wang 1994). We fit a specification similar to the one in
(Campbell, Grossman & Wang 1993) wherein the price movements can arise due to changes in future cash
flows and investor preferences or the risk aversion. The intuition for this would be that a low return due
to a price drop could be caused by an increase in the risk aversion or bad news about future cash flows.
Changes in risk aversion cause trading volume to increase while news that is public will already have been
impounded in the price and hence will not cause additional trading. Low returns followed by high volume
are due to increased risk aversion while low returns and low volume are due to public knowledge of a low
level of expectation of future returns. As risk aversion increases, the group of investor still willing to hold the
stock require a greater return leading to higher future expected returns. Bad news about future cash flows
leads to lower expected returns. This is captured as an inverse relation between auto-correlation of returns
and trading volume. The simplification we employ combines the two sources of price changes into one, since
what can be observed is only the price return. We note that this can be viewed as an extension of the law of
price motion with an additional source of uncertainty. Here, O; is the total volume traded (market volume)

in the interval t. The co-efficient « can be positive or negative, y is positive and 6 continues to be positive.

T

?éil}} B, Z {max [(P; — P;_1),0] S:}
¢ t=1

T
Y 5i=8,5>0,Wi=8 Wri=0, We=Wi1— 5
t=1

P, =(a+1)P,_1 +0S;P,_1 —v(O; = S¢) P14+, Oy 28, 8,0 >0,a € (—00,00) ,E[e4 ]S, P_1] =0
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Or =pOy_1+m, pe(—1,1) = AR(1) Process
er ~ N (0, Ug) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
e~ N (O, 072,) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
Vi (Pi—1, 041, Wy) = ?élfr; E;max{(P; — Pi—1),0} S¢ + Vi1 (Pr, O, Wit1)]

By starting at the end, (time T') we have,
VT (PT_1, OT—l, WT) = ?;I% ET [max{(PT — PT—I) 5 0} ST]
T

Since W4 is zero, we have the optimal trade size, S = Wrp and an expression for Vr as,

Proposition 7. The value functions are of the form, E[Y|Y > 0] where,
Y = (ozPT,lT/VT + BW%PT,l —vpOp_WpPp_1 —YWrPp_1nr + WTET). For the last and last but one

time periods, these can be simplified further to,

Pr_ WrPr_1 —vpOr_1Pp_
VT(PT—1,0T—1,WT):(\/'VQPIQ“—10721+U§>WT¢(§WT) L ewp = | =X 1+ BWrPr1 = 700r-1Fr-1

4 /’yQP%_lcr?7 + 0?2

and

Vi1 (Pr—2,0r—2,Wr_1) = {ngi_nl} Ep_14 571 (\/WQP:%—N% + 02 )

¢ aPr_o+BStr_1Pr_o—vpOr_2Pr_»
aPr_o+ BSt 1Pr_o —ypOr_oPr_» n VP03t

2
\/ ’72PT72O—727 + 03 o (aPT2+BST1 PT2—’Y/)OT2PT2>

\/72P72"72‘7727+”52<

+(Wr—1 — Sr-1) (\/’)’2 {Prs(a+1+BSr—1 —4pO0r—2 — ynr-1) + e7—1} o2 +o? )

{Proa(a+1+4BSr—1 —7pOr—2 —ynr—1) +er1} {o+ B (Wr_1 — Sr—1) —1p°Or—2 — ypur—1}
\/’72 {Pr_s(a+1+BSr_1 — 901> — ynr_1) +er-1}° 02 + 02

b <{PT2(04+1+§ST1’YPOT2W7T1)+ET1}{&+B(WT1ST1)Wp20T2’YP77T1} )

\/72{PT—2(@+1+/8ST—1_’YPOT—2_'YT7T—1)+ET—1}20',2]+U§
+

o {Pr_2(a+14+BS7_1—vpOr_o—ynr_1)+er_1 Ha+B(Wr_1—Sr_1)—vp2Or_2—vpnr_1}
\/VQ{PT—2(OZ+1+[3ST—1*'YPOT—Z*’YT]T—I)‘FET—I}2U%+U§

Here, B =0+,
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Proof. See Appendix [TT.8]
O

This requires numerical solutions at each stage of the recursion. A point worth noting is that the simple
rule from the earlier linear cases, where the price impact is independent of both the prevailing price and
the size of the unexecuted order, no longer applies here. The necessity of having to work with complicated
expressions of the sort above, highlights to us the inherent difficulty of making predictions in a complex
social system and also that our approach to estimating Market Impact provides a realistic platform upon
which further complications, such as working with joint distributions of volume and price, can be built. A

key takeaway from this result is that volume can have counter intuitive effects on the trading costs.

6.3.2 Complex Formulation

The optimization problem and Bellman equation for the complex case can be written as,

T
I{%ir}l E; Z {max [(P; — P;—1),0] W}

t=1

ZT:St =8,8>0,W, =8 Wri1 =0, Wy =W,_1 —S;_1
t=1
Po=(a+1)P1+0SP_1 —v(Or—S) Po—1+¢, O, > 8, 8,0 >0,a € (—00,00) ,E ]S, P—1] =0
O; = pOi_1+n:, p€(—1,1) = AR(1) Process
et ~ N (0,02) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
n ~ N (0, 0727) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
Vi (P=1,0421,Wy) = %lt? Ey max {(P, — P;—1),0} St + Vi1 (Pr, O, Wiga)]

By starting at the end, (time T') we have,
VT (PT—17 OT—l, WT) = gl% ET [max{(PT — PT—l) 3 0} WT]
T

Since W41 is zero, we have the optimal trade size, S = Wp and an expression for Vp can be arrived similar

to the simple formulation in Proposition [7]
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6.4 Trading Costs and Price Spread Sandwich
6.4.1 Simple Formulation

Another useful tool from a trading perspective would be a measure that connects trading costs to the
spread, which can be observed. (Roll 1984; Stoll 1989) connect the stock price changes to the bid-offer
spread. The spread is determined due to order processing costs, adverse information or inventory holdings
costs. The covariance of price changes are related to the covariance of the changes in spread and proportional
to the square of the spread, assuming constant spread. A modification with time varying spread can be easily
accommodated in the specifications above with an additional source of uncertainty or the linear percentage

law of motion. Here, Q); is the spread at any point in time.
P,=P_1+0S+vQ¢t+¢e¢,0 >0,E[e|S, P—1] =0

Qt = pQi—1+m, p € (—1,1) = AR(1) Process
ee~N (07 0?) = Zero Mean IID (Independent Identically Distributed) random shock or white noise
n ~ N (0, 072,) = Zero Mean IID (Independent Identically Distributed) random shock or white noise

6.4.2 Complex Formulation

This would be analogous to the case in[6.4.1
7 Conclusions and Possibilities for Future Research

We have developed a trading cost model using dynamic programming that splits the overall price move into
the market impact and timing components. The separation of total trading costs into the two components,
one of which is directly related to the actions of a participant holds numerous lessons for dealing with complex
systems, especially in the social sciences, wherein reducing the complexity by splitting the many sources of
uncertainty can lead to better insights in the decision process.

The above decomposition allows us deduce the zero sum game nature of trading costs. In addition, we
have develop a powerful numerical technique that can be used under any law of motion of prices and with
multiple sources of uncertainty. The starting values we provide for the Rsolnp optimization call can reduce
the number of iterations it requires to find the optimal values. Hence, a good extension can be to find better
starting values for the optimal value at each time period, based on the innovations and the other parameters.

To ensure that model can be used under different situations, we build upon the benchmark case and
introduce more complex formulations of the law of price motion, including a scenario that has multiple

sources of uncertainty and consider liquidity or volume constraints. Relating the trading costs to the spread
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is also easily accomplished. Key improvements to the model and methodology would stem from adding cases
where volume and prices are not assumed to be independent. Distributions of prices that are not normal
and factor the downward skew in prices might also provide more realistic estimates. Our model takes the
prices process as exogenous, interesting continuations can extend the separation of impact and timing to
models of the limit order book that endogenously consider the evolution of prices. Again we stress the better
insights and understanding that results from using simpler models, but the particulars of the securities being
considered might prompt experimenting with some of the more esoteric extensions. We have looked at only
discrete time formulations, extensions to continuous time might show interesting theoretical behavior.

A practical way to use these models, would need to factor in the market timing over the duration of
trading. Hence, we would need to first get an estimate of the market impact for different time intervals and
also calculate the corresponding market timings. Rather than have a single number for the market timing
for each impact estimate, it would be more useful to have an upper bound and lower bound or the maximum
possible range of the market timing, for each particular time duration. It can be shown that the market
timing depends on the price volatility and hence is a key time sensitive variable. Traders can then make a
decision regarding which combination of market impact and timing they prefer, since they have more control

over the market impact, which is their vessel to navigate the turbulent seas, which is the market timing.
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Figure 4: Complex Regression Co-efficients and Optimal Executions
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Figure 5: Complex Optimal Executions for Different Parameters
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Complex Formulation
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simulationSampleSize  maxUpShares maxDownShares thetalmpact sigmaStockPrice marketimpactAvgCost  marketimpactAvgCostCo totalExecutionAvgCost
50,000 (10,000) 26,664 5.00E-05 0125 59,325 221,153 5,279,818
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(4,695,257.69) 397 180917.79 (0.00) (1,75041) (0.06) 13,521 50.59
(780,061.22) 033 31,246.54 0.00 (306.81) (0.01) 13,341 51.34
(1,255,626.42) 1.99 46,580.56 (0.00) (427.82) (0.04) 13,520 52.07
461,663.54 (0.22) (17,370.25) (0.00) 167.76 0.00 13,329 5271
520,231.17 (0.53) (18,919.57) (0.00) 17517 0.01 13,014 53.23
(12,337.10) (0.29) 1,133.44 (0.00) (14.55) 0.01 11,511 53.96
(1,471,654.07) EA T 53371.92 (0.00) (482.52) (0.05) 9,703 54.50
1,274,243.58 (1.64) (46,538.29) (0.00) 42581 0.04 6,669 54.98
572,552.21 (0.52) (20,709.71) (0.00) 187.92 0.02 4,034 5543
(166,667.63) 090 5,906.11 (0.00) (51.81) (0.01) 1,358 55.59
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(375,763.45) 1.08 13,783.01 (0.00) (126.22) (0.01) & 5540
(99,644.49) 048 3,583.91 (0.00) (32.16) 0.00 - 55.24
35,140.93 0.26 (1,105.89) (0.00) 848 00 (62) 55.05
(437,648.49) 1.67 15,895.24 (0.00) (144.37) (0.02) (89) 54.98
(113,921.61) 093 4143.76 (0.00) (37.80) (0.01) (289) 54.92
439,676.22 007 (16,103.93) (0.00) 147.10 0.01 823) 54.76
352,088.51 (0.14) (12,840.17) (0.00) 116.31 00 (1,593) 54.79
0.00 1.00 (0.00) 0.00 0.00 0.00 2,855 55.03
Figure 9: Simple Regression Co-efficients and Optimal Executions
simulationSampleSize 50,000 20,000 10,000 20,000 10,000 3,000 3000
maxUpShares 26,664 26,664 26,664 26,664 26,664 6,666 6666
maxDownShares - (10,000) (10,000) - - - -
thetalmpact 5.00E-05 2.00E-05 3.00E-05 5.00E-05 5.00E-05 5.00E-05 2.00E-05
sigmaStockPrice 0.125 0.125 0.125 0.125 0.125 05 0.5
marketimpactAvgCost 60,095 59,114 59,325 59,904 60,058 38,627 37,398
marketimpactAvgCostCo 220,022 221,422 221,435 220,091 219,832 290,757 309,926
totalExecutionAvgCost 5,279,926 5,279,839 5,280,004 5,279,803 5,279,703 5,263,218 5,266,761
Optimal Executions 1 13,327 13,076 13,302 12,969 13,327 6,666 6,666
Optimal Executions 2 13,360 13,004 13471 13423 13192 6,666 6,666
Optimal Executions 3 13,355 13,407 13,271 13,243 13,370 6,666 6,666
Optimal Executions 4 13,307 13,210 13,338 13,328 13,530 6,666 6,666
Optimal Executions 5 13,646 13,364 12,889 13,882 13,450 6,666 6,666
Optimal Executions 6 12,735 11,844 12,143 12,813 13,047 6,666 6,666
Optimal Executions 7 9,857 9,890 9,517 9,742 9,598 6,666 6,666
Optimal Executions 8 5,688 6,865 6,504 5,858 5810 6,666 6,666
Optimal Executions 9 2,621 4,235 3735 2,613 2,537 6,666 6,666
Optimal Executions 10 1,200 1,105 1,830 1,134 1,114 6,666 5,196
Optimal Executions 11 540 - - 497 530 6,666 2,973
Optimal Executions 12 133 - - 254 248 6,666 3,361
Optimal Executions 13 128 = = 118 125 2,669 2,920
Optimal Executions 14 55 - - 57 52 4,867 3,833
Optimal Executions 15 20 - (150) 35 40 3,753 3,882
Optimal Executions 16 13 (132) 34 18 16 2,017 2,792
Optimal Executions 17 8 (647) (56) 9 5 5,638 4,522
Optimal Executions 18 4 (549) (952) 2 6 1,063 1,601
Optimal Executions 19 2 (1,613) (1,982) 3 3 - 3,060
Optimal Executions 20 1] 2,941 3,106 1 - - 5,866

Figure 10: Simple Optimal Executions for Different Parameters
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Figure 11: Simple Executions Costs for Different Parameters
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5,318,535
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5,342,211
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5,376,357
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789

optimalTime
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615
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395
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simulationSampleSize maxUpShares maxDownShares thetalmpact sigmaStockPrice marketimpactAvgCost marketimpactAvgCostComy totalExecutionAvgCost
50,000 (10,000) 26,664 5.00E-05 0.125 63,365 218,323 5,281,622
intercept remainingSharesT priceTMinusOne remainingSharesTSqr priceTMinusOneSqr remainingSharesTtimesprice optimalExecs prices
(4,006,778.42) 7.63 145,525.50 0.00 (1,291.75) (0.16) 14054 5073
160,427.77 (0.60) (4,624.58) (0.00) 33.84 0.01 14573 51.60
(641,255.37) 2.08 22,512.24 (0.00) (192.51) (0.04) 14481 52.24
(206,183.10) 0.11 8,183.17 (0.00) T7.77) 0.00 14444 52.96
(134,639.69) 0.60 501093 (0.00) (45.58) (0.00) 13871 53.69
(314,355.73) 1.11 11,610.44 (0.00) (106.59) (0.01) 11832 54.21
385,344.34 0.04 (14,00017) (0.00) 127.67 00m 8595 54.55
(263,077.77) 0.92 9,463.99 (0.00) (84.71) (0.01) 5074 54.96
(161,853.32) 074 5,850.02 (0.00) (52.59) (0.00) 2406 54.99
177,454.88 0.55 (6,572.54) (0.00) 60.99 0.00 670 55.09
(55,060.90) 117 1,946.36 (0.00) (17.08) (0.01) 0 55.04
42,120.83 (0.67) (1,581.50) (0.00) 14.89 0.02 0 5517
14,910.50 110 (567.98) (0.00) 543 (0.01) 0 55.14
(13,442.92) (0.27) 478.51 (0.00) 4.24) 0.02 0 55.21
(14,272.08) 270 508.57 (0.00) (4.52) (0.04) 0 55.30
(8,300.96) 318 295.84 (0.00) (2.63) (0.05) 0 55.29
(675.90) 0.53 23.39 (0.00) (0.20) 0.00 0 54.91
2,746.20 4.82 (102.81) (0.00) 0.96 .07 0 54.89
(2,776.22) 4.80 100.28 0.00 (0.90) (0.08) 0 54.98
2,637.79 0.59) (96.40) (0.00) 0.88 0.04 0 54.82
Figure 12: One Step Regression Co-efficients and Optimal Executions
simulationSampleSize 50,000 20,000 10,000 20,000 10,000 3,000 3,000
maxUpShares 10,000 (10,000) (10,000) 10,000 10,000 10,000 10,000
maxDownShares 26,664 26,664 26,664 26,664 26,664 19,998 33,330
thetalmpact 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05
sigmaStockPrice 0.125 0.125 0125 0.125 0125 0.5 05
marketimpactAvgCost 63,980 63,390 63,579 63,840 64,389 54,108 78,756
marketimpactAvgCostCor 218,122 218,580 218,465 217,912 217,480 241,746 214,481
totalExecutionAvgCost 5,281,986 5,281,901 5,281,978 5,281,640 5,281,760 5,275,963 5,288,405
Optimal Executions 1 15033 14048 14079 15145 15010 10894 17338
Optimal Executions 2 15098 14474 14338 15297 15246 11213 17608
Optimal Executions 3 14503 14465 14474 14621 14855 11014 17867
Optimal Executions 4 14454 14435 14472 14285 14711 11196 16186
Optimal Executions 5 13682 13912 14045 13644 13666 10731 13218
Optimal Executions 6 11409 11826 11967 11192 11215 10700 9763
Optimal Executions 7 7869 8570 8567 7996 7634 10303 5685
Optimal Executions 8 4451 5061 5052 4439 4305 9012 2311
Optimal Executions 9 2132 2541 2389 2158 2062 6908 24
Optimal Executions 10 978 668 617 994 935 4755 0
Optimal Executions 11 391 0 0 219 361 2430 0
Optimal Executions 12 ) 0 0 0 0 T44 )
Optimal Executions 13 0 0 0 0 0 0 0
Optimal Executions 14 0 0 0 0 0 0 0
Optimal Executions 15 0 4] o o 0 o o
Optimal Executions 16 0 0 0 0 0 0 0
Optimal Executions 17 0 1) o 0 1) o 0
Optimal Executions 18 0 0 0 0 0 0 0
Optimal Executions 19 o 1) o 0 0 o o
Optimal Executions 20 0 0 0 0 0 0 0

Figure 13: One Step Optimal Executions for Different Parameters
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6.00E-05
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6.50E-05
7.00E-05
7.00E-05
7.00E-05
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7.50E-05
7.50E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
5.00E-05
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5.00E-05
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5.00E-05
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5.00E-05
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sigmaStockPrice  marketimpactAvgCost

0.125
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050
050
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64,389
63,840
63,980
63,579
63,390
63,365
26,030
26,043
26,188
27,221
27,110
27,273
29,142
28,864
28,554
29,892
30,254
30,436
32,196
32235
32,074
33,530
33,583
33,770
36456
35,638
35,886
37,466
37,222
37,295
38,982
39,879
38,867
40,708
41,01
40,551
43,036
43,087
43,027
26,045
26,482
26,083
27,772
27,901
27,859
28,110
28,694
28,903
30,815
30,346
30,360
33315
31,984
31,996
34,909
35446
35,357
36171
36,877
37,034
39,541
38,934
38473
40,454
40,805
40,106
42473
42175
42,307
34,466
34,497
33,826
33,549
34,667
34,828
34,491
34,331
34,773
34416
34,795
34,735
41,188
41,582
41,608
54,291
53,931
54,108
64,914
66,519
65,048
79,931
75,989
78,756

marketimpactAvgCostComplex
217,480
217,912
218122
218,465
218,580
218,323
271,006
269,456
270,964
286,428
289,437
289,293
309,438
311,968
311,246
330,283
330,559
331,176
350,997
353,907
349,751
372,820
32127
375415
404,560
399,042
400,362
428,419
420,802
419,600
445473
443,432
441,700
474,047
466,455
464,448
493,854
493,433
497,000
304,403
306,716
303,017
316,423
321,736
319,527
324,901
330,643
331,259
345,275
344,807
343,031
366,101
359,369
361,363
386,365
395,217
367,390
397,189
407,699
406,101
423,697
422,837
422,973
439,402
431,677
437,473
454,576
453,460
457,798
372,764
372124
369,301
368,416
370,448
372,084
370,124
371,333
371,911
371,761
372,850
371,822
282,743
280,088
278,267
242,346
243,347
241,746
224201
225,940
223143
218713
213,806
214,481

totalExecutionAvgCost
5,281,760
3,281,640
5,281,986
5,281,978
5,281,901
5,281,622
5,247,096
5,243,159
5,245,478
5,245,256
5,244,126
3244414
5,240,102
5,248,950
5,246,952
5,243,872
5,245,190
5,245,735
3,242,119
5,248,684
5,242,993
5,246,145
5,241,452
5,247,447
5,253,281
5,245,124
5,250,268
5,249,848
3,246,065
5239,519
5,239,783
5,244,730
5,239,040
5,253,985
5,240,444
5,236,778
5,248,876
5,244,963
3,254,102
5122817
5,126,555
5,119,732
5,146,908
5,151,447
5,149,287
5,161,258
5,170,459
5,171,786
3,193,502
5196,725
5,192,854
5228437
5,222,287
5,220,067
5,261,431
5,273,920
5,267,538
5,283,453
3,293,455
5,294,681
5,324,799
5,320,228
5,319,566
5,342,942
5,344,658
5,342,549
5,366,627
5,366,082
3,369,656
5,249,849
5,250,406
5,242,620
5,252,931
5,251,108
5,256,929
5,250,662
5,252,584
5,254,780
3,249,350
5,259,548
5,254,589
5271,494
5,269,434
5,268,825
5,271,672
5,277,206
5275963
5,279,376
5,283,042
5,280,231
5,294,371
5,283,930
5,288,405

Figure 14: One Step Executions Costs for Different Parameters
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totalTime

4,068
11,915
44,547
4,181
10,975
47,382
265
519
805
269
521
807
272
525
809
268
523
814
270
524
802
269
514
799
265
514
806
265
514
800
268
515
804
266
518
802
266
518
809
270
517
805
269
518
806
267
521
809
269
520
807
272
519
810
268
522
807
270
521
809
269
522
811
273
536
826
274
487
869
305
503
778
260
506
788
262
504
786
263
506
803
263
511
10,858
227
516
954
317

924
327
660
1,025

optimalTime

2,649
8,987
35,102
2,953
7,882
36,199
180
348
546
181
348
348
181
349
547
181
348
547
182
348
547
183
349
547
181
349
552
182
349
548
182
349
550
182
350
548
182
351
350
186
350
549
182
350
550
182
351
553
183
351
551
183
351
552
182
351
551
184
351
549
183
351
553
183
360
564
185
328
340
21
338
526
175
337
527
177
337
537
178
340
544
177
342
528
156
343
630
217
423
636
209
449
700

randomTime

500
1,811
712
509
1,592
7,443
16
33

71
16
34

71
17
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Figure 15: Actual Trading Cost Distributions

11 Appendix of Proofs

11.1 Proof of Theorem (1

Lemma 1. We first consider the simple formulation, with one interval and two market participants,

Proof. For the buyer we have,

Market Impact = {max [(P; — P;—1),0] S¢}
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Market Timing = Implementation Shortfall — Market Impact

= (StPt) —StPO —{max[(Pt—Pt_l),O] St}
Here, we use the definition of Implementation Shortfall after adapting it to the one interval case,

Implementation Shortfall = Paper Return — Real Portfolio Return

T
(Z StPt> — SPy = (S,P,) — Si Py
t=1

Similarly we have for the seller (noting that the drop in prices is detrimental to the intended outcome and

changing the sign accordingly),

Market Impact = {max [(P;—1 — P;),0] S;}

Market Timing = —Implementation Shortfall — Market Impact

StP() — (StPt) — {max [(Ptfl — Pt) s 0] St}

If (P> Pi_q),
For the buyer,
Market Impact = (P, — P—1) S;

Market Tlmmg = (Stpt) - StPO - (Pt - Ptfl) St = (Pt71 - PO) St

For the seller,

Market Impact = 0

Market Timing = S;Py— (S¢P) — 0= (Py — P) S:

Sum of the impact and timing across both the participants,

Total Market Impact = (P, — Pi_1) S;

Total Market Timing = (P;—1 — FPy) St + (Po — P.) St = (Pi—1 — P) S;
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Total Market Impact 4+ Total Market Timing = 0

If (Pt < Pt—1)7
For the buyer,

Market Impact =0

Market Tlmlng = (StPt) - StPQ —-0= (Pt - Po) St

For the seller,

Market Impact = (P;—1 — P;) St

Market Timing = —Implementation Shortfall — Market Impact

SiPy — (S¢P) — (Pr—1 — Py) St = S¢Po — St P
Sum of the impact and timing across both the participants,

Total Market Impact = (P;—1 — P;) S;

Total Market Timing = (Py— Pi—1) St + (P — Py) St = (P — Pi—1) St

Total Market Impact 4+ Total Market Timing = 0

It should be clear that this holds for all non-zero positive values of prices and number of shares which

can include zero, that is VP;cfi—0,1,2,...,7} € (0,00) and VS; € [0, 00)

Lemma 2. We next consider the simple formulation, with multiple intervals and multiple participants.

1. We argue that this scenario with multiple intervals and multiple participants can be reduced to an

amalgamation of the above case (Lemma [I)) with a single interval and two participants.

2. Our definition of an interval is such that during each interval, only one exchange happens between
buyer and seller for a total of two participants, with the sum of market impact and market timing

being equal to zero.

3. To convince us that such an interval exists, we reason as follows: when multiple exchanges happen
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during an interval, we split the interval into sub-intervals such that only one exchange happens in
each interval. If multiple exchanges happen simultaneously, they can be viewed as one exchange by

combining all the buy trades on one side against the sell trades on the other side.

4. The sum of many such individual intervals also have the same property (by mathematical induction),
wherein the sum of market impact and market timing equals zero, which follows from (Lemma . It
should be clear that this holds for all non-zero positive values of prices and number of shares which can

include zero, that is VPc1—0,1,2,....7} € (0,00) and VS; € [0, 00) across all the intervals considered.

Lemma 3. Lastly, we consider the complex formulation with multiple intervals and multiple participants.

1. We argue that the complex formulation scenario with multiple intervals and multiple participants can

be reduced to an amalgamation of the above two cases (Lemmal[I] [2)).

2. Any shares unexecuted by the end of a certain time interval will need to be executed before the end
of the total time duration available for trading, since we note that by assumption, there will be no

unexecuted shares once the total time duration is completed.

3. We apply Lemma [I] to the sum of impact and timing for the shares executed at the last time interval,
making this sum zero. We then consider the last interval and the interval before that together and
apply Lemma [2] to these two intervals, which gives the sum of impact and timing across both these

intervals as zero.

4. We can then include additional intervals towards the beginning of the trading duration and deduce that
the sum of impact and timing across the new interval and the already aggregated intervals is zero using
mathematical induction. It should be clear that this holds for all non-zero positive values of prices and
number of shares which can include zero, that is VPic—0,1,2,.... 7y € (0,00) and VS; € [0, 00) across all

the intervals considered.

5. Hence, by considering the shares executed in the last interval and successively including the intervals
before that, we get that the corresponding sum of market impact and market timing equals zero. The
result is that we have at the end of the total trading duration after aggregating across all the individual
intervals, the sum of total market impact and total market timing being equal to zero. This completest

the proof of Theorem [I]
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11.2 Proof of Proposition

Proof. We have from the value function for the last time period.

Vr (PTfl, WT) = FEr [max {(QWT + ET) s 0} WT]

Vi (Pr—1,Wr) = Er [max { (W2 + Wrer) ,0}]
Vr (Pr—1,Wr) = Er [ (0W3 + Wrer)| (0W7 + Wrer) > 0]
{ Emaz (X,c)]=E[X|X >c|Pr[X >+ Ec|X<c]Pr[X<qd}
This is of the form, E[Y]Y > 0] where, Y = (W2 + Wrer). We then need to calculate,

OWr

O¢

Er (QW%—FWTUEZ)’Z > (— >} ,where Z ~ N (0,1)

[- Y ~N (W7, Wi02)=Y ~ N (n,0°) =Y =p+0Z;Y >0=2>—pu/o]

We have for every standard normal distribution, Z, and for every w, Pr[Z > —u] = Pr[Z <u] = ® (u).

Here, ¢ and ® are the standard normal PDF and CDF, respectively.

BEZ|Z> -] = (I)tu) [/:)tqb(t)dt}
1

'.'/th(t)dt:/t L e—%tzdt:/ Ve Ly

Hence we have,

Setting, ¥ (u) = u + ¢ (u) /@ (u),
E[Y]Y > 0] = 0¥ (u/o)
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Vr (PTfl, WT) = FEr [(QW% + WTET)’ (QWQ% + WTET) > 0]

OWr
= Wro- IQZT i iEfVWT%] = o Wrp (EWr) |, €= Uﬁ

€

O¢

In the next to last period, T' — 1, the Bellman equation is,

Vir_1 (Pp_g, Wp_1) = {éﬂin} Ep_y [max{(Pr—1 — Pr—2),0} Sp—1 + Vo (Pr—1, Wr)]
T—1

{éﬂin} Er_i[max{(0S7—1 +er—-1),0} Sr—1 +Vr (Pr—2+0Sr—1 +er—1, Wr_1 — S7_1)]

0ST_1 O(Wr_1—Sr-1)
= {SHTﬂ_nl} {ST105 [955;1 + :;E%}El%] + (Wp_1 — Sp_1) 0. le(WT;E— S1-1) + zEQ(WTTESTl)gl }

= {énin [St—10:9 (£ST—1) + Wr—1 — Sr—1) 0. {§ (Wr—1 — Sp—1)}]

T-1}

We show this to be a convex function with a unique minimum. Let us start with,

or  (a) (z)
[ T @ G o)
LTY I Y1 P
S R eI R e

_ ¢(2) {-2%(2) + 2?0 (2) + 3u¢ (z) © (x) + 2¢* () }
@3 (x)
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Consider the following, Vz > 0
Let K (z) = 326 (z) ® (z) + 2¢° (z) + (2* — 1) @* ()

For z > 1, K (z) > 0. Also,

K@O)=1-1>0
e 37%° 1 1 T 1
6@) =" 0(0) = o= q><x>:2{1+erf(ﬁ)} : @(0):21

For z € (0,1),
K' (z) = 3¢ (z) ® (z) — 32°¢ (z) ® (2) + 324> () — 42¢* () + (2° — 1) 20 (z) ¢ (2) + 22®* (2)

K (z) =2{29 (z) — ¢* ()} + {1 - 2°} ¢ (2) @ (z) > zL (x

~

where, L (z) = {2®% (z) — ¢* (z)}. Further, ®(z) > 1 and ¢? (z) < £ = L(z) >

1
2

0 = K (z) is increasing. Hence, K (z) > K (0) > 0 |VYu € (0,1). This gives, K (z) > 0 and 2312 >

0 | Vz € (0,00). It is worth noting the following asymptotic properties

. 0*G (x) . 9*G(x) . 0G(x)
.Ig%l+ 92 >O,xlin;o 52 =0; B <0 |Vz>0
Next we show that f (a — ) is convex, given f” (z) >0; © >0
Lety=a—x
ofy) _ 9f(yo(a—=)

or Oy oz 477
=(-1)f"(y)

Ox? Oy Oox

=f" ()

>0 [ f"(y)>0|Vy>0]

We can similarly show that f (bx) is convex if f (z) is convex (in our case, b > 0, but the result holds Vb).
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Next we derive conditions when x? + xf (x) is convex, given f” (z) > 0; x >0

Let g(x) = 2°+af ()
g (@) = 2zo+af (2)+f(2)
9" (@) = 2+4af"(z)+2f (x)

o Let Q (z) —x2+xg(<i))
- 3 -{a)]
% _ 2+x¢(x)[_qﬂ(x)+x2q>2(x);3(g><x)q>(x>+2¢2(m)]+2 _xi((i))_{g((gﬂ

2392 (2) + 322¢ (7) ® (x) + 22¢? (z) — 3202 (z) — 2¢ (x) @ (x)}

- 20| (@)

_ [2@3 (z) + 2392 () ¢ () + 3229 (2) @ () + 229> (x) — 32D? (2) ¢ (x) — 2¢° (z) ® (x)}
3 (z)

Let, K () = 2®° (z) + 22¢° (z) + 2382 (z) ¢ (x) + 32202 (x) D (2) — 32D (z) ¢ (x) — 26° (x) D (2)

We need to show that K (z) > 0 |[Vz > 0. First we note that,

We can write this as,

K (z) = 22¢° (2) +2°®® (2) ¢ (2) + 32¢* (2) ® (2) + @ () [20° (2) — 32® (2) ¢ (x) — 2¢* ()]
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We then need to show,
L(z) = [29° (z) — 32® () ¢ (x) — 2¢° (z)] > 0|vVz >0

L(0) = [28%(0) — 2¢° (0)] :%—1>0

™

40 (x) ¢ (z) — 3 () ¢ () — 3zd? (x) + 32°® (2) ¢ (z) + 4x¢? ()

= ®(2)¢(x)+32°® (x) ¢ (x) + 24> (x) > 0|Vz >0

Therefore L(z) is an increasing function on the interval [0, 00). Its minimum must be at L(0) > 0, proving
L(z) > 0 and % > 0 | Va € (0,00). It is worth noting the following asymptotic properties and the

graphical results shown in the main text,

02 0? 0
o Jim (,igm) >0; lim ;’igm) >0: %fcx) >0 |Va>0
0
11.3 Proof of Proposition
Proof. Consider,
Vr_1 (Pr_o,Wr_1) = ;Ilijl} [ST—10:9 (§ST—1) + (Wr_1 — S7—-1) 00 {{ (Wpr_1 — S7-1)}]
Here, v (u) = u+ 6 (u) /B (u) , €=
First Order Conditions (FOC) give,
% [St_10: (ES7—1) + (Wr—1 — S7—1) 09 { (W1 — S71)}] =0
T-1
ESr 1" (ES7—1) + ¥ (§Sr—1) =& (Wr—1 — Sr—1)¥" (E{Wr_1 = Sr—1}) =9 (E{Wr_1 = Sr_1}) =0
2 &7 a9 (ESro1) [a:(gsTl)r { ¢ (£S7-1) }
$ora {1 ® (£57-1) oS [ oot ® (£S7-1)
2 B €Wl = Sr_1) ¢ (E{Wr—1 — Sr_1}) {¢(§{WT1 —sT1}>r
+& (Wr—1 — S7-1) { 1+ SEWr—Sra]) + B (€ (Wr 1 —Sr 1))
B B ¢ (E{Wr1 — Sra}) }
{emrr-sm s S -
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Spytten 4 L9 (ESr—1) | EWr1 = Sr-1)" ¢ (E{Wr_1 — Sr1})

3 £2 @ (&S7-1) @ (E{Wr-1— Sr-1})

$E{Wr_1— 571>
(Wr—1 = Sr-1) [@(5{w§_1 S| C

(Wr—y = Sr-1) + % (W1 — Sy} +— ¢ (E{Wr—1 — Sr_1})

&2 (E{Wr_1 — Sr-1})
65710 (€Sr-1) | o {¢(£ST1)' :
O (EST-1) P (EST-1) ]
Setting Sp_1 = Wr_1/2 gives RHS = LHS. We have,
0StT_1
0S5, ¢\~
Vr_1 (Pr—o,Wr_1) = Sr_i0. =14 (es )
O¢ (I)( (7T;1)
O(Wr_1—S7-1)
O (Wr_1 — Sr_)  \— o
+ (Wrp_1 — Sr—1) 0e { (Wr 10 r-1) + (G(WT_lsT_l))]
: @ (A=)

o (b (GWT—l)
_ 20.
Vi1 (Pr—o, Wr_1) = Wr_10. [ e R ]

20, o (QWT—I)

Absent closed form solutions, numerical techniques using & > 0 can be tried. We can also set Sp_1 =~
w1 (Wr—_1) using a well behaved (continuous and differentiable) function, w;. But the former approach is
simpler and lends itself easily to numerical solutions that we will attempt in the more complex laws of motion

to follow.

Sr_1=&Wr_y

or with additional terms including non-linear regressions as,
Sr_1 =~ &+ EWr_1 + & (Wr_1)? OR Sr_y ~ & (Wp_)™

Vi1 (Pr—2,Wr_1) = [0:6Wr1¢ (§&Wr—1) + {Wr—1 —&Wr_1} oo {€(Wro1 — §:Wr-1)}]
= o Wr_1 [ (§6Wr—1) + (1 = &) Y {EWr—1 (1 = &1)}]

=11 (Wr_1) ,here, 91 is a convex function.
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Continuing the recursion,

Vr_o (Pp_3,Wr_s) = {glin} Er_o[max {(Pr_a — Pr_3),0} Sr—2 + Vp_1 (Pr—2, Wr_1)]
T—2

= min FEp_o[max{(0Sr—2+er_2),0} Sr—2+ Vr_1 (Pr_3+0Sr_o+er_3, Wr_o — Sr_5)]

T—2

|:9(WT,27$T,2)}

20

L o(%r
= (i, | Srac 95;82 @EW%

Oc¢

0 (Wp_g — Sp_2) n

+ (Wr—2 = Sr—2)0c 20, d {M]

First Order Conditions (FOC) give,

oot (0557,2> 925%72(?(05;;2) . ¢(950T;2

] sy, [20552)

®(2) oo (f2) ® (=)
)

)

30Sr_o — OWr_o +

0P [‘G(WTEZST%)} 02 (Wr_o — Sp_s)* @ [‘6(WT7220:ST72)} 0 (Wr_o—Sr_s) | @ {T
9 {9(WT_2—ST_2)} + 4o > {e(WT_z—ST_z)} + 2 <I>[

20, 20,

O(Wr_o—Sr_2)
20:

This gives, St_o = Wr_5/3 and the corresponding value function as,

0 Wr_o 0 2Wr_o
v (P W ) _ Wr_o EWsz ¢ (E 3 ) 2Wr_o 0 2Wr_o + ¢ [20E 3
=2 T=s, Wr=2) = 3 e O¢ 3 P (i WT—Q) 3 e 20'5 3 P |: 6 2Wr_o
O¢ 3 20 3
oW ¢ (LV”)
_ 30
Vr_o (Pr—3,Wr_2) = 0. Wr_» —
30, ) (OWT—Q)
30-
We show the general case using induction. Let the value function hold for 7' — K
oW d) ((QWT—K )
T-K K+1)o.
_k (Pr_g_ _K)= _
Viex (Pr-x—1,Wr_k) =0-Wr_k K+1)o. (I)(GWFK)
(K+1)o.
Continuing the recursion,
Viek 1 (Pr-g—o,Wr_g_1) = min  Ep_ g1 max{(Pr_-x-1—Pr_x_2),0} Sr—x 1

{Sr-Kk-1

+ Vr_x (Pr—x—1,Wr_K)]

= min  Ep_g_1 [max {(0Sr—x-1+er—K-1),0} ST—K-1
{Sr—Kx-1}

+Vr_g (Pr—g—2+0Sr—x-1+er—k—2,Wr_kx_1— Sr—k-1)]
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0ST_K-—1
0Sr_x—1 P\ T o
= min |:ST—K—10-E { ST K-1 + ( ) }

{Sr-Kk-1} O¢ P (M)

Oc

O(Wr_k—1—ST-K-1)
O Wr_r—1—Sr—K-1) n ¢ { (K+1)o. }
(K + 1) O¢ P |:9(WT7K71—ST—K—1):|

+ (Wr—kx—1—Sr—K-1)0- {

(K+1)o.

. ¢ (EST—K-1) }
= S oy S 1o +7
{S;ngll}|: K 1{5 TRt O (EST_K—1)
EWr_k_1—Sr_K-1)
(W _g ) EWr_k-1—Sr—x-1) 9 { (K+1) }
=K1 =K1 (K + 1) o |:§(WT—K—1—ST—K71):|
(K+1)
First Order Conditions (FOC) give,
¢ (EST—K— 1)}
S +
{6 T—-K-1 gST P 1)
¢ (§ST—K-1) { (£S7—K—1) 2
+S7_ K- — &8 Kk -
Txl{f § T K (€8 k1) 3 €5TK1
EWr_k_1—ST_K_ 1)
_ {S(WTK1 - Sr_K-1) ¢[ (K+D) }
4% 1—S 1
(K+1) <IJ [5( T K(K+1)T K—1)
EWr_kx_1—ST_K— 1)
+Wr-g-1—Sr-K-1) {_ ‘ + € (Wr-r1 = Sr-r-1) ? [ Y ]
B ST K+1 2 EWr_k_1—STt_K-1)
(K+1) (K +1) @{ e }
Wr_k-1—St_kx_1
¢ ) |:§( D ):|
T E+D EWr—r—1-5 ) =0
o]
9 2 ¢ [E(WT—K—l—ST—K—l)j|
%Sy 1 + ¢ (EST-K-1) +f (Wr_x 1 _S;Tfol) E+D
O (EST—K-1) (K+1) d [f(WTflikliliT—Kfl)}
EWr_k_1—St—_K_1)
+€(WT7K71 — Sr_Kk-1) ¢ [ (K+1) } _
(K—l—l) |:£(WTKISTK1:|
(K+1)
ST_K-1) (EST—K-1) 2
262 ¢(§TK1+S__[
SR 65y e a) T B (€8 g )
EWr_k_1—ST_K_1)
26 Wr_g_1 — Sr—Kk-1) . d)[ &) }
K+1 EWr_kx_1—ST_K_1)
(K1) RS coa
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This gives, St—x—1 = Wr_x_1/ (K + 2) and the corresponding value function is,

) (i WT—K—I)
 Wr_k 0 Wr_k— o (K+2)

Vrok-1(Pr—x—o,Wr—g-1) = K+2) 7 o E+2) g (iWT—K—1>
o (K+2)

Wr_k—1 0 Wr_k—1

K1 — . W o — LK1
+(W”” <K+2>)"{<K+1>as( ok <K+2>)
0 Wr_ k-1
¢[m (WT—K—l‘ K+9) )

0 Wr_k_
o [(KJT)JE (WTfol — &ty

Vg1 (Pr—g—2,Wr_x-1) =0Wr_g_1 [Us =) + o (i T )}

0. (K+2)

This completes the induction.

11.4 Proof of Proposition

Proof. Consider,

VT (PT—l, WT) = ET [max {(QWT + e’:‘T) ,O} WT]

Vi (Pr—1,Wr) = By [max { (W7 + Wrer) ,0}]
Vi (Pr—1,Wr) = Ep [ (0W7 + Wrer)| (W] + Wrer) > 0]
{7 Elmaz (X,c)]=FE[X|X >c]Pr[X >c+ E[c|X<c]Pr[X< }
This is of the form, E [Y|Y > 0] where, Y = (W7 + Wrer). We then need to calculate,

OWr

O¢

Er | (0W; + Wro.Z)| Z > (— )} ,where Z ~ N (0,1)

[o Y ~ N (W, Wio2) =Y ~ N (,0?) =Y =p+0Z;Y >0=Z > —pfo]
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We have for every standard normal distribution, Z, and for every w, Pr[Z > —u] = Pr([Z <u] = ® (u).

Here, ¢ and ® are the standard normal PDF and CDF, respectively.

E[Z|Z> -] = étu) {/Ootgb(t)dt}
1

Hence we have,

E[Y]Y > 0] u+oE{Z|Z><—Z)}

o)

® (p/o)

Setting, ¥ (u) = u + ¢ (u) /P (u),

E[Y[Y > 0] = o¢ (/o)

€
Oe¢

Vp (Pr—1,Wr) = Er[(0W;+ Wrer)| (0WF + Wrer) > 0]
HWT
owy 9o 0
= Wro. |— + ( ; = oW (€Wr) , €= —

Os P (0WT

In the next to last period, T' — 1, the Bellman equation is,

Vi1 (Pp_o,Wr_1) = {gﬂiﬂ} Er_y max {(Pr_1 — Pr_2),0} Wp_y + Vp (Pr_1, Wr)]

T—1

= {gmin} Er_1max{(0Sr—1 +er_1),0} Wp_1 + Vp (Pr—o +0Sr_1 +ep—_1, Wp_1 — Sp_1)]

osr,  o(%)

0(WT—1*ST—1))
) + (Wr_1 — Sr_1)0c

0 (Wp_1—Sr_1) ¢ ( -
O By (M)

O¢

= min < Wr_i0
{S7-1} | o o (%

O¢

T—1

Vr_1 (Pp_g, Wp_1) = {;nin} [Wr_10:¢ (EST-1) + Wr_1 — St—1) o) {€ Wr_1 — S1-1)}]
Here, ¥ (u) =u+ ¢ (u) /P (u) ; €= aﬁ ; Note that, Wpr_1 = Sr_1 + Wy

We can show the above expression to be a convex function with a unique minimum, since it is the sum of

the portion shown to be convex earlier (Proposition |1, Appendix [11.2]), another convex function and a linear

component.
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First Order Conditions (FOC) give,

0
0S7_1

Wr_10:9 (EST—1) + Wr—1 — Sr—1) 00 {{ Wr_1 — Sr—1)}] =0
EWr 19" (€S7—1) = E(Wr—1 — Sr—1) ¢ (E{Wr—1 — Sr1}) = (E{Wr—1 = Sr1}) =0

(EWr-1) {1 85710 (ESr-1) [¢(§ST_1

® (£S7-1) P (£S—1

EWr—1 — Sr—1) ¢ (E{Wr—1 — Sr-1}) [925 (E{Wr—1 — Sr—1}
O (E{Wr_1—57_1}) O (E{Wr_1—Sr_1}

—_ [ — ~_ | —

& (Wr—1 — Sr—1) {1 -

6 (€ (W1 — Sr1})
e s Sy - 0

e w) [e@]P e

l"“) T 1 *@(u)]

€ (Wr—1 = Sr—1)* ¢ (E{Wr—1 — Sr_1})
(§{WT 1—Sr-1})

¢ (E{Wr_1 — Sr_1}) n EWr 15719 (ST 1)

O (E{Wr_1— Sr_1}) O (£S7-1)

¢ (E{Wr_1 — S 1})}

O (E{Wpr_1—Sr_1})
(&Sr- nr

®(£ST-1)

Wr_1 + + (Wp_y — Sr_1) [

(Wr—1—=87-1) +{Wp_1— Sr_1} + -

+Wr_y [
O

11.5 Proof of Proposition

Proof. Consider,
VT (PTfl, XT,1, WT) = ET [max{(@WT +éeT + '7XT) ,O} WT]

Vr (Pr—1,X7r-1,Wr) = Er [max {(0W} + Wrer + vpWrXr—1 +YWrnr) ,0}]
= Br [(0WZ + Wrer +vpWr Xr—1 +YWrnr)| (0WF + Wrer + yoWrXr—1 + yWrnr) > 0]
{ Elmaz (X,c)]=E[X|X >c]Pr(X >c|+ E[c|X<c]|Pr{X<d}

This is of the form, E[Y|Y > 0] where, Y = (GW% + Wrep +vpoWrXp_1 + 7WT77T). We then need to

calculate,

A% X7_
{GW:,% +yoWerXr_1 +Wr (, /fy?a% + 0?2 ) Z}‘ Z > (—\/T:Zipil)] ,where Z ~ N (0,1)
veo;, +o;

69



[ X ~N(px,0%); Y ~N(py,03); U=X+Y = U ~ N(px + py, 0% + 0y )]
[ Y ~ N (W7 +9pWr X1, Wi {y?0or +02}) =Y ~ N (1,0°) =Y =p+0Z;Y >0=Z > —pjo]

We have for every standard normal distribution, Z, and for every w, Pr[Z > —u] = Pr[Z <u] = ® (u).

Here, ¢ and ® are the standard normal PDF and CDF, respectively.

E[Z|Z>—u = <I>1u) [/Ootgb(t)dt}
I T
= s ORI =E0)

Hence we have,

E[Y]Y > 0] /1+JE{Z|Z><—§)}

 ed (o)
KNG
Setting, o (u) = u+ ¢ (u) / (u),

E[Y|Y > 0] =0y (p/o)
Vr (Pr—y, Xp-1,Wr) = Ep [(0W; + Wrer + voWrXr—1 + yWrnr) | (0WE + Wrer +vpWrXo_1 +yWrnr) > 0]

(;5 <9WT+’YPXT1
OW. Xr_ VrPontot
:WT(/72072]+0§) rtapXra

V7ion oz g eWrtyeXr
A /“/2UEI+U§

ow: X7
= (4202 + 02 ) Wrp (eWr) , €Wy = — 12T
\/ V2ol + o

In the next to last period, T'— 1, the Bellman equation is,

Vr—1 (Pr—o, Xr—2,Wr_1) = {éﬂin} Ep_; [max{(Pr—1 — Pr—2),0} Sr—1 4+ Vr (Pr—1, Xr—1, Wr)]
T—1

= {énin} Er_q [max { (95%_1 + St_1er—1 +ypSTr—1 X712 + ’YST—177T—1) 50}
T—1

+ Vi (Pr—a+0Sr—1+er—1+vpXr—2 +v0r—1,pX1r—2 + 071, Wr_1 — S7_1)]
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OST_1+vpXT_2

¢< 2 2 )
= min { S, (W) 0811 +3pXr—2 Jroita? )

¢

{Sr-1} \/’W o <95T 1+ypXr_2

O(Wr_1—Sr_1)+vpX1_2
\/72024’_02

O Wr_1—Sr—1) +vpXr_
7oy T Og

0

OWr_1—S1_1)+vpXT_ 2>

\/'y oFto?
= {g;{lll} {ST—l (\/’YQU% + 02 ) Y (&1S7-1) + Wp_1 — Sr—1) (\/7203, + o2 ) Y {& (Wr_q — ST—l)}]

057 Xr_
Here, &57-1 = Tt pAT2 Also, let ay = ypX1_2, B = /7?03 + 02

\ /720?7 + 02

0Sr_1+a
= i 052 1+ a1Sp_1 + ﬁSlew

O(Wr_1—Sr_1)+a1
3 g )

+ [0 (Wr_y — ST—1)2 + a1 Wr_1—Sr—1) + 8(Wp_1 — Sp_1)

O(Wr_1—Sr_1)+a1
®( E )

This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

s (esT,ﬁﬁal) oS, (QST}RH-CH) 8 (057"7/31-5-6%1) 8 (esT 1+a1 }
)
)

20St_1+a1+ + -

® (98T731+a1) B ® (QST—ﬂl“Fal) - ® (95T 1+061

¢(0(WT 1—St_1)+a1

—20 (WT,1 - STfl) - +p

_(I)(9(WT 1—=ST_1)4a

O(Wr_1—Sr_1)+a1 O(Wp_1—Sr_1)+a1 O(Wr_1—Sr_1)+a1
LOWroy = Sro) ( 3 )¢( 5 )+ ¢( 5 ) -
153 S (Q(WT—I—ST—l)"FOil) ® (G(WT—l—ST—l)JF@l) a
B B

St_1 = Wr_1/2 solves this, giving the value function,

0 GWT—IJFQOZI)
2p

Vr_1 (Pr—g, Xr—o, Wr_1) = 2W72*1+041WT1"'ﬂWT1q)(ele+2a1

)

Continuing the recursion,

Vir_o (Pp_3, Xr_3,Wr_s) = {éﬂin} Er_omax{(Pr_o — Pr_3),0} Sr—o + Vr_1 (Pr_a2, Xr—2, Wr_1)]

71



= {énm}ET 2 [max{(@ST 2+ST 26T 2+’YPST o X7 3+’YST 2N — 2) 0}
T2

+ Vi1 (Pr—3s+0Sr—o+er—o+vpXr_3+vnr—2, p X713+ n1—2, Wr_o — S7_9)]

0ST_ 2+’Y/)XT 3

(o)
= min { Sr_o (\/m) 0ST_o+vpXT_3 N 2452
¢

'y 0'2+c72

2\/W ) O{Wr_2—Sr_2}+27pX1— 3>

<0{WT 2—S7_2}+2yp X7 3)
_ 2 02402
+{Wr_o — Sr_2} (\/W) O{Wr_o — Sr_2} +2vpX71_ 3, V7

( 2\/’}’202+02
N {»‘?Tlig} [ST_Q <\/m) ¥ (§257-2) + (Wr—2 — S1—2) <\/m ) Y {& Wr_g — Sr— 2)}}

0St_o + 2vpX1_
Here, &S7_o = St—2 + 2pXr s Also, let ag = vpXp_3, = ,/720727+0;~f

2, /’}/20727 + 0?2

(95T ;+a2)
— 3 2
= ([, 0ST_o + aaSt—2 + BST—2 o (0ST_2+az>
B
9 , ® (Q(WT72_2523T72)+2Q2)
+ 3 (Wp_g —Sr—2)” + ag (Wr_go — Sr—2) + 8 (Wr_2 — Sr_2)

O(Wr_2—S7_2)+2a
(b( T—2 2ﬂT 2 2)

This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

08 s+ s b 5 o (%) N 0Ss_ s ) (QST—;+(¥2) & (GSTfﬁz-&-tw) ) ¢ (W%)

0ST_2+as ﬂ 0ST_o+as 0ST_2+as
@ (Hpre) @ (Hp) @ (Hrgptes)

O(Wr_2—Sr_2)+2a
¢( T—2 2,BT 2 2)

B d (9(WT—2—2~ZT—2)+QO¢)
G(WT,275T72)+2a2 H(WT7275T72)+2042 G(WT72*ST—2)+2O¢2
0 (Wr—2 — St-2) ( 28 ) ¢ ( 28 ) " ¢ ( 26 ) - 0

2/ d <9(WT72—2‘557“72)+2(12> & (Q(WT—Q—i}T—Z)+2QE) o

—0 (Wr_g —Sp_2) —as+f

+

St_1 = Wr_1/3 solves this, giving the value function,

OWr_o+3as
38

0
Vr_o (Pr_g, Xr_3,Wr_s) = W%2+a2WT2+ﬁWT2@(eme
)

3
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We show the general case using induction. Let the value function hold for T'— K

OWr_g+(K+l)ag
0 > (KTD)P
Vr—k (Pr-x—1, Xr-rk—1, Wr-k) mWT_K +axWr_g + BWT—K(I) (HWT—K+(K+1)OLK
(K-',-—1)6>

Vr—k-1(Pr-x—2, Xr—kx—2,Wr_k-1) min  Er_g 1 [max{(Pr_x_1— Pr_x_2),0} Sr_x_1

{Sr—Kk-1}

+Vr_k (Pr—g—1,Xr—Kk—1, Wr_K)]

= min _ Er_g_1 [max { (95%_1(_1 +Sr_k_16r—Kk—1+7vpST—Kk -1 XT_K—2 + ’YST—K—lnT—K—l) ’()}

{Sr—k-1}
+Vr_k (Pr—g—2+0S7—xk—_1+er—xk—1 +v9pXr—k—2+ V01— -1, PX1-K—2 + 17—K—1, Wr—K -1 — ST—K—1)]

0ST_Kk_1+vpXT_K_2

¢<
OST_ ) _ e 'ya?+a2
= min ST_K_1< 72072,+U§) r-K-1+ X1 K2 . v

{Sr—Kk-1} \/’W & 0Sr_k_1+vpXT_K—_2
\/’y o2+02
+{Wr_g_1—Sr—k-1} (\/’m)
¢ K 2 2
O{Wr_g—1—Sr—k—1} + (K +1)ypXr_3 (K+1)y/7?0% 402

_|_

(K+1)\/W

O{Wr_rk—1=Sr_ k-1 }+(K+D)yp X1k 2>

o | HWr—k—1=Sr—r 1} + (K4 D)o X1 k-2
(K+1)\/720727+02

R T [ST‘K—l (\/m) ¥ (Ex+157-K-1)
+(Wr—g—1—S7-K-1) (\/m) V{1 Wr_g_1 — STfol)}}

O0ST_r—1 4+ 29pXr_K—2

Also, let a1 =vpXr_K_2, B = 72(7% + 02
2.2 2
2y /vion + 0%

Here, {x1157 k-1 =
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¢ 0ST_K_1t+ari )
B

— 3 2
= i 0S7_ k1 +axi1Sr—Kk-1+BST-Kk-1 o (M)
B

4 2
+ m Wr_k-1—Str—k-1)"+axs1 Wr_g_1— ST—K—l):|

) OWr_k_1—St—rk—1)+(E+Darxi1
(K+1)B

® (e(WT—K—l*ST—K—1)+(K+1)O¢K+1 )
(K+1)B

+ | BWr_k-1—Sr—K-1)

This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

) (9ST K-1+tar41
208r_g—1+ak41+ 8

@(9ST K—1t+orq1

|
JSr | (B o (B[S }
)
)
)

153 iy (GST—K—IJFO’KJrl) - o (9ST K— 1+04K+1)
B B
20 ¢(9(WT K_1— SEF K— 1)+(K+1)0¢K+1
K+1)B
_ E+1) (Wr—gx-1—Sr—k-1) —ax+1+ 0 7<I> (Q(WT K-1—S7_rx_1)+(K+D)ak 1
(K+1)B
OWr_xk_1—S7_rx_1)+(K+1)a O(Wr_x_1—S )+ (K+1)o
(K+1)8 o (e(WT,Kfl—S(TI;K{)%)JF(KH)WH)
+
é 9(WT—K—1—ST—K—1)+(K+1)OLK+1)
(R+D)p _
& <G(WT—K—I_ST—K—1)+(K+1)(¥K+1) o
(K+1)B

Sr_k—1=Wr_k_1/ (K + 2) solves this, giving the value function and completing the induction.

0 ¢ (HWT—K—(1+(I§+2)OCK+1)
K+2)8
Vr—k—1(Pr—kx—2, Xr—x—2, Wr_x_1) mwjgff(fl +oagpiWr_k_1+ BWr_k_1 o (W (k2
(K+2)8
O

11.6 Proof of Proposition

Proof. Consider,

Vi (PT—la Xr_1, WT) = FEr [max{(@WT +er + ’YXT) ,O} WT]

Ve (Pr—1,X7_1,Wr) = Ep [max { (QW% + Wrer +yoWrXp_1 + ’YWT77T) ,0}]
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= FEr [(QW% + Wrep +vpoWrXp_1 + 'YWTUT)| (QW% + Wrep +voWrXpr_1 + ’YWTT]T) > 0}
{v Elmaz (X,c)]=E[X|X >c]Pr(X >c|+ E[c|X<c]|Pr[X<d}

This is of the form, E[Y|Y > 0] where, Y = (F)W% + Wrep +vpoWrXp_1 + 'yWTnT). We then need to

calculate,

oW Xr_
Er {HW% +yoWrXr_1 4+ Wrp (1/’)/20‘% + 0?2 ) Z}‘ Z > _OWr tapdr ,where Z ~ N (0,1)

VYon ol
[ X ~N(ux,0%); Y ~N(uy,08); U=X+Y = U ~ N(ux + piy, 0% + 0% )]
[ Y ~ N (W7 +ypWrXr_1, Wi {1200 +02}) =Y ~ N (p,0°) =Y =p+0Z; Y >0= 2> —pjo]

We have for every standard normal distribution, Z, and for every w, Pr[Z > —u] = Pr[Z <u] = ® (u).

Here, ¢ and ® are the standard normal PDF and CDF, respectively.

E|Z|Z> ] = q)tu) Uojw(t)dt}
- r erm] - 2
Hence we have,
ElY|Y >0] = u+aE{Z|Z>(—§)}
-

Setting, ¥ (u) = u + ¢ (u) /@ (u),
E[Y]Y > 0] = o (u/o)

Vi (Pr—y1, X7—1,Wr) = Ep [(0W7 + Wrer + voWrXr—1 + yWrnr) | (0WF + Wrer +vpWr Xo_1 +yWrnr) > 0]

¢ <9WT+’YPXT—1
oW Xp_ VPonte?
:WT(\/’Y2U%+03) T topar Ly ]

A/ ,)/20'72’ + 0’3 P OWr+~ypXrT_1
\J1Porto?

oW, Xr_
= (1202 + 02 ) Wrp (eWy) , eWp = 1L
\/2o2 + o2
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In the next to last period, T'— 1, the Bellman equation is,

Vi1 (Pr_o, X720, Wr_1) = {éﬂin} Ep_imax {(Ppr_1 — Pr_2),0} Wr_1 + Vi (Pp_1, X7_1, Wr)]

T—1

= min} Er_y max {(Wr_1S7_1 +Wr_1er—1 +ypWr_ 1 Xp_o +yWr_1n7_1),0}

+ Ve (Pr—2+0Sr_1+er—1+vpXr—o+ynr—1,pXr—2+nr_1, Wr_1 — Sr_1)]

) ("ST—H“W(M>
= min < Wp_, (\/M) OSrt X + o
= _ 2+ 02
{51} \/’W o | 9871ty Xro
/7202+02
¢ O(Wr— 1 St_1)+vpXT_2
7 2op+to?

WT 1—ST— 1)+’YPXT 2)

\/'y 0'2 +o?2

0 (Wp_1 — Sp— X1
+{Wr_1— Sr_1} (W) (Wr 1\/%’W T—2
'70',,] JE

0

= min [ Wroy (\/3203 402 ) (@Sr1) + (Wror = Sr0) (/7203 +02 ) 646 (Wra — 570}

0ST_ X7_
Here, £&57_1 = T-1+7pAT—2 Also, let @« = vpX1_o, = wW20727 + 0?2

\VYon+o?

gb (GST—I"FQ)
= min OWr_1Sr—1 + aWr_1 + Wr_; d

Sr_ 0ST_1+a
{ST-1} @(%)

O(Wr_1—Sr_1)+a
¢( T ﬁT 1 )

+ [0 (Wr_1 — S7—1)* + a (Wr_1 — S7—1) + B (Wr_1 — S7_1) . (0(WT,1—ST,1)+a)
B

This is a convex function and taking First Order Conditions give,

; (9ST;+a)¢<9ST;+a) ¢ esT 1+a ]}
S —
)

OWr_1+ BWr_y 3| @(M> - q) 0S7_1+a 1+(x

OWr_1— ST OWr_1—Sr_1)+a

O(Wr_1—Sr_1)+a O(W: Sr_1)+a O(W: S O(Wr_1—Sr_1)+a
+9(WT_1_ST_1) ( TlBTl )¢( TlﬁTl ) T—1"PT—1 )

] o (0(WT,1753T,1)+a>

Q(WTI ST 1)+
—QG(WT 1—ST 1 —()Z—Fﬂ{

O(Wr_1— ST 1 +a)
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11.7 Proof of Proposition [6]

Proof. Consider,

Vi (Pr—1, Xp—1, W) = Er [max { (ﬁT (14 O0Wr + v Xr) — PT,l) ,0} WT]

Vi (Pr—1,Xr_1,Wr) = Ep {max { (ﬁquBT 14+ 0Wr +~ (pXr—1 +07)] — PTA) ,0} WT]

= Er [max {JBTAWTGBT + OW2Pr_1ePT 4 ypXp 1 Pr_\WpePT + yPr \WpePTye — WpPr_y, OH

= Er [(f’TAWTeBT + HW%ﬁTfleBT + X711 Pr_ WrePT + 4 Pr_ WrePTn, — WTPTA)‘

(ﬁT_leBBT + QW%ﬁT_leBT + ’)/pXT_lf)T_le@BT + ’YﬁT_leEBT’f]T — WTPT_l) > 0}

{ Elmaz (X,c)]=E[X|X >c]Pr(X >c|+ E[c|X<c|Pr(X<d}

This is of the form, F [Y3] Y2 > 0] where,

Y, = (}ST_1WT€BT + QW%.ZBT_leBT + ’prT_lﬁT_leeBT + ’yJST_leeBTT]T — WTPT—I)' We sim-
plify using some notational shortcuts,

FE [(an +beX + ceX + de¥V; —|—k)| (an +beX + ceX +de¥ Yy +k) > O]

X~N (ux,a_%{) Y1~ N (0,012/1) ; X and Y] are independent. Also, a,b,c,d > 0,k <0

=  E[(e{a+btct+dVi}+k)| (e {a+b+c+dYi} +k) > 0]

E[(eXY +k)| (Y + k) > 0]

X~N (,ux,ag() Y ~ N (ILLY,O'%/) ; X and Y are independent. Also, k <0

Consider,

E[(eXY +k)| (e*Y +k) >0] = E[k|(e*Y +k)>0]+E[(eXY)]|(e*Y +k) >0]
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= k+E[(YeX)| (YeX +k) > 0]

= kj+//yexf(yem|{yex+k}>O)da:dy

Here, f (w) is the probability density function for w,

) L F e fye” + K > 0)
- e+ | e gy e

[We note that, ye® > —k > 0=y > 0]

_ «f W) f(e” {ye” +k} > 0)
= o [ o B g

. {/ e I;Ddx] £ () dy

* I

{ew > ’;}) dx} 1 () dy

-l

oo

- k+/0(y<my[/e””f(eﬂ{ﬁ>1})dw]f<y>dy+/(y>k)y[/eﬂﬁf(eﬂ{e%l})dz f ) dy

(=k) &)
= k+/ y[E(W|W>c)]f(y)dy+/ y[E(W|W <o) f(y)dy ; here, W =eX and ¢ =1
0 (—k)
Simplifying the inner expectations,
E(W|W > ) 1 /OO LTy
>c)= ——5—— w————=€ 7X w
P(eX >e¢) /. woxV2r

Put t = In (w), we have, dw = etdt

E(W|W >¢) =

: /“ ¢ ()
l

- - e
P(X >ln (C)) n(c) UXm

1 /t—pux 2 1 2 o3
t—2< -~ ) :—E(t—(ux-ﬁ-dg()) +ux+7x
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2
(HXJrle ) 00 1 1 [67]
E(WIW >¢) = . / ’ * dt 7 ~N(0,1)
l

e
n(c) UX\/%

Put s = {M} and b = {w} we have, ds = 4t

P(ux +oxZ >In(c))

ox ox ox

E(W|W > ¢) elextiox) /°° L 1y
>c) = e 2 s
P (Z > l”@%”) y V21

elux+3o%)

P(Z<%)

/Oo L 10y /b LEPRETLY
L aeg 1oy,
—00 271' o \/ﬂ

6(/‘X+%0‘§()
- In(c)+ [1—®(b)] ;@ is the standard normal CDF
—tnlc)Tpx
P (Z < T)
e(#X+%U§()
RE=) [ (=0)]
ox
Similarly for the other case,
BWIW <0 = prg— [t AR g
C) =
Pe* <c) Jo woxV2r

Put ¢ = In (w), we have, dw = edt

E(W|W ! e e “3(55) g
= DB v -1\ ox
= P (X <lin(c)) [m P

1/t—px\’ 1 Lo o2
=5\ or :_E@_(Mx-&-g)()) +ix + 5

(hx+io%k) In(c) 1 71[’5*(“0)(74”%(
E(W|W <c¢)= e / : <

—e
P(ux +oxZ <lin(c)) J_oo oxV2rm

} we have, ds = 4&
ox

Put s = {M} and b — {w

ox ox

E(W|W<c¢) =

elux+30%) /b 1
P (Z < M)
ox

elnx+30%)
= [® (b)] ;@ is the standard normal CDF
P (Z < ln(c)—ux)

ox

elux+30%)

= @ (@ (b)]

ox
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Using the results for the inner expectations,
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11.8 Proof of Proposition [7]

Proof. Consider,

VT (PTfl, OTfl, WT) = {Iglri ET [max{(PT - PTfl) 5 0} ST]

Vi (Ppr—1,07-1,Wr) = Ep [max {(«Pr—1 + 0WrPr_1 —v(Or — Wp) Pr_y +e7) ,0} Wr]

= FEr [max { (OéPT_1WT + GWQ%PT_l + VW%PT—l —vpOr_1WpPpr_y —yWpPr_1nr + WTgT) ,0}]
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Setting 5 =0 + ,

Vi (Pr—1,07-1,Wr) = Er[(aPr1Wr + BW;iPr_1 — ypOr_1WrPr_1 — yWrPr_inr + Wrer))|
(aPr_yWr + BW;Pr_y — vpOr_1WrpPr_1 — YW Pr_inr + Wrer) > 0]
{7 Elmaz (X,c)] = FE[X|X >c]Pr[X >c+ E[c|X<c]Pr[X<q}

This is of the form, F [Y|Y > 0] where,

Y = (aPT_lVVT + ﬁW%PT_l —vpO1r_WrPr_1 —yYyWprPr_1nr + WTET). We then need to calculate,

{QPT—1WT + BWEPr_y — ypOp_1WrPr_y + Wy (\/’YZP;%_W% + 02 ) Z}’
~aPr_y+ BWrpPr_y —ypOr—1Pr—

\ /VQP%_la,% + 0?2

[ X ~N(px,0%); Y ~N(uy,03); U=X+Y = U ~ N(ux + py, 0% + 03 )]

Er

Z >

,where Z ~ N (0,1)

Y ~N (OéPT—1WT + BW2EPp_y — ypOr Wy Pr_1 — YWy Pr_1nr + WT€T)

=Y ~N(po’)=Y=p+0Z;Y>0=2>—pjo

We have for every standard normal distribution, Z, and for every u, Pr|Z > —u] = Pr(Z <u] = ® (u).

Here, ¢ and ® are the standard normal PDF and CDF, respectively.

E[Z|Z> -] = q)lu) Uootgz)(t)dt}

( —u
L e ()
= 3@ [POR] =35
Hence we have,
E[Y|Y >0 = u+aE[Z|Z><—Z)}
_ o (p/o)
= T S /o)

Setting, ¥ (u) = u + ¢ (u) /P (u),
E[Y|Y > 0] = 0 (/o)
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Pr_ WorPr_1 —vpO1_1Pr_
Vi (Pr_y,Op_1,Wy) = WT( /VZP:%—N?;‘*‘U?) aPr_i1 4+ BWrPr_y — vpOr_1Pr_y
\/’72P%—10727+‘7§

) aPr_1+BWrPr_1—ypOr_1Pr_1
\/721372"71‘7%+‘7§
+

d aPr_1+BWrPr_1—ypOr_1Pr_:
\/72P12*71‘7727+‘7§

aPr_q1+ WpPpr_1 — ypOp_1 Pr_
= (V2P o2 o2 ) Wrw (W) ewy = | DTt OV o = 2pOra iy
\/72P%710727+U§

In the next to last period, T' — 1, the Bellman equation is,

Vr—1 (Pr—2,0p_o,Wp_1) = {gliﬂ Ep_y [max{(Pr—1 — Pr—2),0} Spr—1 + Vp (Pr—1,Or_1, Wr)]

T—l}

= {éﬂin} Er_y [max {(aPr_sSy—_1 + BS}_1Pr_o — vpOr_2S7_1Pr_o — vSr_1Pr_anr—1 + Sr—1e7-1) ,0}
T-—1

+ Vr((a+1)Pp_o+ BSr—1Pr_gs —vpOr_oPr_o — yPpr_onr_1 +ep_1, pOr—2 + nr—1, Wr_1 — S1_1)]

aPr_2+BSt_1Pr_2—vypOr_2Pr_» >

¢
aPr_o+ BSt 1Pr_o —ypOr_2Pr_» . VP PR_p0% ot

2
A /’72PT720‘72] + 0’2 o ((XPT_2+5ST—1PT—2_’YPOT—2PT—2)

\/72P12"72‘72;+‘7?

+ (Wr—1 — Sr—1) (\/’72 {Pr_s (a+ 1+ BSr_1 —vpO0r—2 — yir—1) + er—1}’ o2 +o? )

{Pr_o(a+14BSr—1 —vpO0r—2 — yr-1) + er—1} {a+ B (Wr_1 — Sr—1) — vp*Or—2 — ypnr-1}
V7 {Pra (@ + 1+ BSr_y — 1pOr_s — yir—1) + e7-1)7 02 + 02

b {Pr_a2(a+1+BSt—1—vpOr_2—ynr—_1)+er—1}{a+B(Wr_1—S1_1)—vp*Or_2—vpnr_1}
V72 {Pr—2(a+14+851 1 —vpOr—2 =y —1)+er—1 1202 +02

+

@ {Pr_2(a+14+8S7_1—vpOr_—2—ynr-1)+er_1 }{a+B(Wr_1—S7_1)—vp*Or_2—vpnr—1}
\/72{PT—2(0¢+1+ﬁST—1_'YPOT72_"/77T—1)+5T—1}20%+U§
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12 Summary of Related Papers

Building on the foundation laid by (Bertsimas & Lo 1998), another popular way to decompose trading
costs is into temporary and permanent impact (See Almgren & Chriss 2001; Almgren 2003; and Almgren,
Thum, Hauptmann & Li 2005). While the theory behind this approach is extremely elegant and considers
both linear and nonlinear functions of the variables for estimating the impact, a practical way to compute it
requires measuring the price a certain interval after the order. This interval is ambiguous and could lead to
lower accuracy while using this measure.

More recent extensions include: (Huberman & Stanzl 2005) minimize the mean and variance of the costs
of trading for the case of market orders only and derive explicit formulas for the optimal trading strategies,
showing that risk-averse liquidity traders (someone that wishes to trade a fixed number of shares within a
certain time horizon) reduce their order sizes over time and execute a higher fraction of their total trading
volume in early periods when price volatility or liquidity increases. (Forsyth, Kennedy, Tse & Windcliff 2012)
argue that quadratic variation can be regarded as a reasonable risk measure (rather than variance) and derive
the Hamilton Jacobi Bellman (HJB) Partial Differential Equations (PDE) and provide numerical methods
to solve for both the optimal strategies and the efficient frontier with arbitrary constraints on the strategy,
assuming that the asset price dynamic follows either Geometric Brownian Motion (GBM) or Arithmetic
Brownian Motion (ABM).

(Almgren & Lorenz 2007) derive optimal strategies where the execution accelerates when the price moves
in the trader’s favor, and slows when the price moves adversely; (Kissell & Malamut 2006) term such adaptive
strategies “aggressive-in-the-money”; A “passive-in-the-money” strategy would react oppositely. (Schied,
Schoneborn & Tehranchi 2010) consider the problem faced by an investor who must liquidate a given basket
of assets over a finite time horizon. They assume that the investor’s utility has constant absolute risk
aversion (CARAED and that the asset prices are given by a very general continuous-time, multi-asset price
impact model and show that the investor does no worse if he narrows his search to deterministic strategies.

(Schied & Schoéneborn 2009) use a stochastic control approachﬂ building upon the continuous time model
of (Almgren 2003), and show that the value function and optimal control satisfy certain nonlinear parabolic
partial differential equations that can be solved numerically. (Kato 2014) develops a mathematical model of
optimal execution, by formulating it as a stochastic control problem in the continuous time domain. The
continuity of the value function and the semigroup property (Bellman principle) are investigated with the
findings that the value function is continuous in each parameter except for the time origin, where the right-

continuity at ¢ = 0, depends on the market impact function. The semigroup property suggests that the value

17
5CARA has exponential utility of the form u(c) = 1 — e~ ¢, so that the absolute risk aversion, A (c) = —Z/((Cc))
constant. Wikipedia Link on Risk Aversion.

6(Wikipedia Link on Stochastic Control: Stochastic control or stochastic optimal control is a subfield of control theory that

deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system.)

=a, a
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function is characterized as a viscosity solution of the corresponding HJB equation, which is a nonlinear
second order PDE.

(Gatheral & Schied 2011) find a closed-form solution for the optimal trade execution strategy in the
Almgren-Chriss framework assuming the underlying unaffected stock price (stock price before the impact or
before the transaction occurs) process is a GBM; (Schied 2013) investigates the robustness of this strategy
with respect to misspecification of the law of the underlying unaffected stock price process. (Guo & Zervos
2015) study the optimal execution problem in the context of a continuous time model with multiplicative price
impact, involving singular control rather than absolutely continuous control: this setting does not restrict
stock transactions to be realized at a rate over time; instead, it allows for block sales of stock. In classical
control problems (Shreve 1988), the cumulative displacement of the state, caused by control, is the integral
of the control process (or some function of it), and so is absolutely continuous. In impulse control, this
cumulative displacement has jumps, between which it is either constant or absolutely continuous. Bounded
variation control (defined to include any stochastic control problem in which one restricts the cumulative
displacement of the state caused by control to be of bounded variation on finite time intervals) admits both
these possibilities and also the possibility that the displacement of the state caused by the optimal control is
singularly continuous, at least with positive probability over some interval of time.

Building on empirical evidence that instantaneous market impact is a strongly concave function of the
volume (Lillo, Farmer & Mantegna 2003), well approximated by a power law function, at least for trading
rates that are not too high; (Curato, Gatheral & Lillo 2017) find that the discretized cost function exhibits
a rugged landscape, with many local minima separated by peaks. (Brunnermeier & Pedersen 2005; Carlin,
Lobo & Viswanathan 2007) are extensions to situations with several competing traders, wherein if one trader
is forced to liquidate his holdings, other traders also sell, creating downward price pressure, and buy back
the assets later at a lower price.

(Huberman & Stanzl 2004) provide theoretical arguments showing that in the absence of quasi-arbitrage
(availability of a sequence of round-trip trades that generate infinite expected profits with an infinite Sharpe
ratio, that is infinite expected profits per unit of risk), permanent price-impact functions must be linear;
though empirical investigations suggest that the shape of the limit order book (LOB) can be more complex
(Hopman 2007).

In contrast to many studies, where the dynamics of the asset price process is taken as a given fundamental,
(Obizhaeva & Wang 2013) proposed a market impact model that derives its dynamics from an underlying
model of a LOB. In this model, the ask part of the LOB consists of a uniform distribution of shares offered
at prices higher than the current best ask price. When the large trader is not active, the mid price of the
LOB fluctuates according to the actions of noise traders, and the bid-ask spread remains constant. A buy

market order of the large trader, however, consumes a block of shares located immediately to the right of
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the best ask and thus increase the ask price by a linear proportion of the size of the order. In addition, the
LOB will recover from the impact of the buy order, i.e., it will show a certain resilience. The resulting price
impact will neither be instantaneous nor entirely permanent but will decay on an exponential scale. Bid-ask
spread and market depth capture the static aspects of liquidity, related to the shape of the limit order book,
which determines how much the current price moves in response to a trade. Resilience reflects the dynamic
aspect of liquidity, related to how the future limit-order book evolves in response to the current trade.

(Alfonsi, Fruth & Schied 2010) extend this by allowing for a general shape of the LOB defined via a given
density function, which can accommodate empirically observed LOB shapes and obtain a nonlinear price
impact of market orders. They also allow for dynamic updating of trading strategies and intermediate sell
orders. The resilience of the LOB after a large market order is modeled as having an exponential recovery of
the number of limit orders, i.e., of the volume of the LOB, or the exponential recovery of the bid-ask spread.
(Predoiu, Shaikhet & Shreve 2011) derive optimal strategies, (under a general shape of the LOB), that are a
mixture of lump purchases and continuous purchases with the rate of purchase set to match the order book
resilience.

(Fruth, Schoéneborn & Urusov 2014) analyze optimal strategies, for a risk neutral investor, when liquid-
ity varies deterministically (liquidity is time dependent; depth and resilience can be independently time-
dependent in contrast to the LOB model of Obizhaeva & Wang 2013) and find that in the case of extreme
changes in liquidity, it can even be optimal to completely refrain from trading in periods of low liquidity.
Price manipulations under such a scenario are ruled out by considering a time dependent spread, which
widens when liquidity is low and a trader buys in large quantity hoping to sell it later and make a profit
without depressing market prices in periods of high liquidity. Empirical studies based on the LOB model
are (Biais, Hillion & Spatt 1995; Potters & Bouchaud 2003; Bouchaud, Gefen, Potters & Wyart 2004; and
Weber & Rosenow 2005).

A related strand of literature looks at models of the LOB from the perspective of dealers seeking to submit
optimal strategies (maximize the utility of total terminal wealth) of bid and ask orders. (Ho & Stoll 1981)
analyze the optimal prices for a monopolistic dealer in a single stock when faced with a stochastic demand to
trade, modeled by a continuous time Poisson jump process, and facing return uncertainty, modeled by diffu-
sion processes. (Ho and Stoll 1980), consider the problem of dealers under competition (each dealer’s pricing
strategy depends not only on his own current and expected inventory position and his other characteristics,
but also on the current and expected inventory and other characteristics of the competitor) and show that
the bid and ask prices are shown to be related to the reservation (or indifference) prices of the agents.

(Avellaneda & Stoikov 2008) combine the utility framework with the microstructure of actual limit order
books, as described in the econo-physics literature, to infer reasonable arrival rates of buy and sell orders;

(Du, Zhu & Zhao 2016) extend the price dynamics to follow a GBM in which the drift part is updated by
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Bayesian learning in the beginning of the transaction day to capture the trader’s estimate of other traders’
target sizes and directions. (Cont, Stoikov & Talreja 2010) describe a stylized model for the dynamics of a
limit order book (which serves as a comprehensive introduction to limit order books), where the order flow
is described by independent Poisson processes and estimate the model parameters from high-frequency order
book time-series data from the Tokyo Stock Exchange.

(Cont, Kukanov & Stoikov 2014) study the price impact of order book events - limit orders, market orders,
and cancellations - using the NYSE Trades and Quotes data for fifty randomly selected stocks. They show a
linear relation between order flow imbalance, (OFI, defined as the imbalance between supply and demand at
the best bid and ask prices) and price changes, with a slope inversely proportional to the market depth. The
OFT explains price changes better than the trade imbalance, (defined as the difference between volumes of
buyer and seller-initiated trades), during a given interval, and is a more general measure of supply/demand
imbalance because it adequately includes the effect of trade imbalance.

(Cont & Kukanov 2017) focus on the order placement problem, which is to choose an order type - market
or limit order - and which trading venue(s) to submit it to, when there are multiple alternatives. They
derive an optimal split between market and limit orders for a single exchange and extend the results to the
general case of order placement on multiple trading venues. A numerical algorithm for solving the order
placement problem in a general case is provided using a robust modification of the Robbins-Monro stochastic
approximation technique (Robbins & Monro 1951; Nemirovski, Juditsky, Lan & Shapiro 2009).

(Guo, de Larrard & Ruan 2017) derive optimal placement strategies for both static and dynamic cases (in
the static case, as opposed to the dynamic case, a strategy is completely decided before execution takes place,
that is at ¢ = 0, and is unchanged over the entire order internal), under a correlated random walk model,
with mean-reversion for the best ask/bid price (the spread between the best bid price and the best ask price
is always one tick and the best ask price increases or decreases one tick at each time step; also the change
in the ask price is a Markov chain, with probability that makes prices mean reverting). In the static case,
the optimal strategy involves only the market order, the best bid, and the second best bid; whereas for the
dynamic case it depends on the remaining trading time, the market momentum, and the price mean-reversion
factor.

(Gabaix, Gopikrishnan & Stanley 2006) present a theory in which spikes in trading volume and returns,
and hence stock market volatility, are created by a combination of news and the trades of large investors.
Spikes in market activity can imply that the empirical moments might be infinite; requiring returns, trading
volume, price impact and the size of large institutional investors to follow power law distributions, which is
supported by plenty of empirical evidence. The model explains the power law distribution of price impact and
reconciles the power law of returns and trading volume, while deriving the optimal behavior of institutional

investors.
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While our work focuses on separating impact and timing in the (Bertsimas € Lo 1998)
framework; a natural and interesting continuation would be to extend this separation to models
of the limit order book.

Models of market impact and the design of better trading strategies are becoming an integral part of
the present trend at automation and the increasing use of algorithms. (Jain 2005) assembles the dates
of announcement and actual introduction of electronic trading by the leading exchange of 120 countries
to examine the long term and medium term impact of automation. He finds that automation of trading
on a stock exchange has a long-term impact on listed firms’ cost of equity. Estimates from the dividend
growth model, as well as the international CAPM, suggest a significant decline in expected returns after
the introduction of electronic trading in the world’s equity markets, especially in the developing nations and
confirms the finding from previous studies that electronic trading improves a stock’s liquidity and reduces
investors’ trading costs. (Hendershott, Jones & Menkveld 2011) perform an empirical study on New York
Stock Exchange stocks and find that algorithmic trading and liquidity are positively related.

It is worth noting a contrasting result from an earlier study. (Venkataraman 2001) compares securities on
the New York Stock Exchange (NYSE) (a floor-based trading structure with human intermediaries, specialists,
and floor brokers) and the Paris Bourse (automated limit-order trading structure). He finds that execution
costs might be higher on automated venues even after controlling for differences in adverse selection, relative
tick size, and economic attributes. A trade occurs when an aggressive trader submits a market order and
demands liquidity, hence the rules on a venue are designed to attract demanders of liquidity and nudge
liquidity providers to display their orders. Displaying limit orders involves risks. First, the counter-parties
could be better informed, and liquidity providers could get picked off. Hence, they would like the trading
system to allow them to trade selectively with counter-parties of their choice. Second, they risk being front-
run by other traders with an increase in the market impact of their orders. Hence, large traders want to
hide their orders and expose them only to traders who are most likely to trade with them. This means fully
automated exchanges, which anecdotally seems to be the way ahead, need to take special care to formulate
rules, to help liquidity providers better control the risks of order exposure.

What this also means is that, the design of better strategies and models is crucial to survive
and thrive in this continuing trend at automation. Our paper aims to fill the gap in existing
models of trading costs, which are theoretically elegant but are not readily applicable to real life
trading situations, since they do not allow participants to gauge how they are performing in
comparison to the other participants with whom they are competing for liquidity. Our models
have a strong theoretical foundation but they can be applied to actual trading situations due to
the insights they provide to participants. In addition, our numerical framework can be be used

to obtain optimal execution schedules under any law of motion of prices.
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