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1 Abstract

We develop a fundamentally different stochastic dynamic programming model of trading costs. Built on

a strong theoretical foundation, our model provides insights to market participants by splitting the overall

move of the security price during the duration of an order into the Market Impact (price move caused by

their actions) and Market Timing (price move caused by everyone else) components. We derive formulations

of this model under different laws of motion of the security prices, starting with a simple benchmark scenario

and extending this to include multiple sources of uncertainty, liquidity constraints due to volume curve shifts

and relate trading costs to the spread.

We develop a numerical framework that can be used to obtain optimal executions under any law of motion

of prices and demonstrate the tremendous practical applicability of our theoretical methodology including the

powerful numerical techniques to implement them. Our decomposition of trading costs into Market Impact

and Market Timing allows us to deduce the zero sum game nature of trading costs. It holds numerous

lessons for dealing with complex systems, wherein reducing the complexity by splitting the many sources of

uncertainty can lead to better insights in the decision process.

2 Introduction

The recent blockbuster book, David and Goliath: Underdogs, Misfits, and the Art of Battling Giants

(Gladwell 2013), talks about the advantages of disadvantages, which in the legendary battle refers to (among

other things) the nimbleness that David possesses due to his smaller size and lack of armor, that comes in

handy while defeating the massive and seemingly unbeatable Goliath. Despite the inspiring tone of the story

the efforts of the most valiant financial market participant can seem puny and turn out to be inadequate, as it

gets undone when dealing with the gargantuan and mysterious temperament of uncertainty in the markets. A

trader’s conundrum is whether (and how much) to trade during a given interval or wait for the next interval

when the price momentum is more favorable to his direction of trading. We aim to provide mechanisms

that can aid participants and make their life easier when confronting the markets; but given the nature of

uncertainty in the social sciences, any weapon will prove to be insufficient compared to the sling shot that

delivered the fatal blow to Goliath, until perhaps, one can discern the ability to read the minds of all the

market participants.

We develop a fundamentally different stochastic dynamic programming model of trading

costs (section 4) based on the Bellman principle of optimality. Built on a strong theoretical

foundation, this model can provide insights to market participants by splitting the overall move

of the security price during the duration of an order into the Market Impact (price move

caused by their actions) and Market Timing (price move caused by everyone else) components.

Plugging different distributions of prices and volumes into this framework can help traders decide when to
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bear higher Market Impact by trading more in the hope of offsetting the cost of trading at a higher price

later. We derive formulations of this model under different laws of motion of the security prices. We start

with a benchmark scenario and extend this to include multiple sources of uncertainty, liquidity constraints

due to volume curve shifts and relate trading costs to the spread (section 6).

The unique aspect of our approach to trading costs is a method of splitting the overall move of the security

price during the duration of an order into two components (Collins & Fabozzi 1991; Treynor 1994; Yegerman

& Gillula 2014). One component gives the costs of trading, that arise from the decision process that went

into executing that particular order, as captured by the price moves caused by the executions that comprise

that order. The other component gives the costs of trading, that arise due to the decision process of all the

other market participants, during the time this particular order was being filled. This second component

is inferred, since it is not possible to calculate it directly (at least with the present state of technology and

publicly available data) and it is the difference between the overall trading costs and the first component,

which is the trading cost of the executions that make up that order alone. The first and the second component

arise due to competing forces, one from the actions of a particular participant, and the other from the actions

of everyone else, that would be looking to fulfill similar objectives.

We develop a numerical technique (section 5) that can be used to obtain optimal executions

under any law of motion of prices, using a modification of the technique for pricing American

options (Longstaff & Schwartz 2001). Our results demonstrate the tremendous practical appli-

cability of our theoretical framework including the numerical techniques to implement them.

The decomposition of trading costs into Market Impact and Market Timing allows us to

deduce the zero sum game nature of trading costs (section 3.7). It holds numerous lessons for

dealing with complex systems, wherein reducing the complexity by splitting the many sources

of uncertainty can lead to better insights in the decision process1.

2.1 Deeper Intuition from Realistic Trading Situations

Naturally, it follows that each particular participant can only influence to a greater degree the cost that

arises from his actions as compared to the actions of others over which he has lesser influence, but an

understanding of the second component can help him plan and alter his actions to counter any adversity that

might arise from the latter. Any good trader would do this intuitively as an optimization process, that would

minimize costs over two variables direct impact and timing, the output of which recommends either slowing
1To elaborate on this, in any social system it would be helpful to first distinguish the different participants and how

their actions contributes to uncertainty. If this is possible, then understanding these components of uncertainty can
sometimes help in the analysis of social systems. For example, if we are looking to analyze the shopping patterns in a
mall, if we can distinguish shoppers who buy on impulse and shoppers who buy after looking for discounts, we might
be better able to forecast sales and analyze this system better. Also, our study can aid in the understanding of complex
non-linear phenomena, such as the evolution of prices in financial markets by considering the price changes as being
caused by multiple sources of uncertainty. Such an approach of understanding the various sources of uncertainty can
be useful in the study of complicated physical phenomena as well.
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down or speeding up his executions. With our methodology, traders now actually have a quantitative indicator

to fine tune their decision process. When we decompose the costs, it would be helpful to try and understand

how the two sub costs could vary as a proportion of the total. The volatility in these two components, which

would arise from different sources (market conditions) would require different responses and hence would

affect the optimization problem mentioned above, invoking different sorts of handling. Hence, based on an

understanding of two components and the situation at hand, traders would know which cost would be the

more unpredictable one and hence focus their efforts on minimizing the costs arising from that component.

The key innovation can be explained as follows:

1. A jump up in price on an execution that comprises a buy order is considered adverse and attributed as

impact, while a fall in price is not. Yes, the price could fall further if not for the backstop provided by

the executions that comprise the buy order; but the key aspect to remember here is the bilateral nature

of trading. A price fall for the buyer (or a benefit for him) is impact for the seller (and hence adverse);

and the seller bears the impact cost in this case. To understand this better, we need to remember that

if there is a lack of liquidity a buyer can only bid up the price in the hopes of obtaining enough shares

to meet his demand and it is these jumps in price in a direction, adverse to his direction of trading that

are attributed as his market impact.

2. Most trading cost models consider elaborate theories of the price drifting around, but what actually

happens during the transfer of securities is one party, usually, has an upper hand and that is the portion

we look to measure as impact for the other party. The key fallout from measuring impact this way is

that we have a better way to measure the effect of our actions from when we have a concrete advantage,

to when we are okay to put up with a certain disadvantage.

3. The message from this reality is that despite our ambitions to optimize the entire trading process, what

we can control is the market impact due to our trades; the market timing, which is the impact for

our counter parties is dependent on the decision process of these other market participants and hence

beyond the domain of what we can hope (or choose) to optimize.

4. While no measure of trading costs is perfect and complete, this methodology goes a long way in actually

providing tangible ways for someone to understand the effect of their decision process and the associated

implementation of trades.

Another analogy to understand this methodology is to think of each execution as effecting a state transition

from one price level to another. The impact is then the cost or charge involved to make the state transition.

We can also think of the change in price levels as moving from one station to another in a train and the ticket
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price is the cost involved to make this journey. If there is excess demand to travel from one station to another,

the ticket price, which is the same for everyone at a particular point in time, changes accordingly and only

those that are willing to pay can make the journey. That we are considering the state transitions for each

execution at millisecond intervals means that we are building from the bottom up and aggregating smaller

effects into an overall impact number for the order based on the executions that comprise it. Theoretically

since it is possible that multiple parties could execute simultaneously (two or more buyers and / or sellers on

each side), the question of which of the parties is more responsible for causing the price level to change and

whether there needs to be a proportional allocation of the price jump does not set in, since all the parties are

travelers on the same journey and they all have to pay the ticket price. Though, for executions that happen

through a continuous auction process at larger intervals of time, a proportional allocation based on the size

of each parties execution might be a possible alternative and will be pursued in later papers.

Figures 1 and 2 show the reversion in the price after an order has completed, broken down by volatility

and momentum buckets. The full order sample includes 148,812 orders from 70+ countries with 17 countries

having at-least a thousand orders each. The reversion is based on two measures:

1. In time, 5 minutes and 60 minutes after an order has completed.

2. In multiples of the order size, one times and five times the size of the order.

The five Trade Momentum buckets are based on the side adjusted percentage return during the order’s

trading interval:

1. Significant Adverse (<-2%)

2. Adverse (-1/3% thru -2%)

3. Neutral (-1/3% thru +1/3%)

4. Favorable (+1/3% thru 2%)

5. Significant Favorable (>+2%)

The four Trade Volatility buckets are based on the coefficient of variation of prices during the execution

horizon:
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1. High Volatility (>0.0050)

2. Moderate Volatility (0.0010 thru 0.0050)

3. Low Volatility (0.000000000000001 thru 0.0010)

4. No Volatility (<= 0.000000000000001)

The size of the bubbles indicates the relative magnitude of the order and its position on the vertical axis

signifies the reversion amount in basis points. The box and and the whisker capture the areas where 25%

and 75% of the sample resides. Not surprisingly, the momentum is higher in periods of greater volatility, as

seen more clearly from the measures based on multiples of the order size (right half of the figures 1 and 2).

The higher volatility accentuates the efforts required to trade in such an environment. This illustrates the

issue that traders face and the optimization process that is followed where they try to benefit from positive

momentum and try to avoid adverse momentum by trading more when adverse momentum is anticipated,

while being conscious of the level of volatility.

2.2 Related Literature

Building on the foundation laid by (Bertsimas & Lo 1998), another popular way to de-

compose trading costs is into temporary and permanent impact (See Almgren & Chriss 2001;

Almgren 2003; and Almgren, Thum, Hauptmann & Li 2005). While the theory behind this

approach is extremely elegant and considers both linear and nonlinear functions of the vari-

ables for estimating the impact, a practical way to compute it requires measuring the price a

certain interval after the order. This interval is ambiguous and could lead to lower accuracy

while using this measure.

More recent extensions include: minimizing the mean and variance of the costs of trading for the case of

market orders only to derive explicit formulas for the optimal trading strategies (Huberman & Stanzl 2005);

considering quadratic variation as a reasonable risk measure rather than variance, (Forsyth, Kennedy, Tse &

Windcliff 2012); the problem faced by an investor who must liquidate a given basket of assets over a finite

time horizon (Schied, Schöneborn & Tehranchi 2010); (Almgren & Lorenz 2007) derive optimal strategies

where the execution accelerates when the price moves in the trader’s favor, and slows when the price moves

adversely;2
2(Kissell & Malamut 2006) term such adaptive strategies “aggressive-in-the-money”; A “passive-in-the-money” strategy would

react oppositely. consider. They assume that the investor’s utility has constant absolute risk aversion (CARA) and that the
asset prices are given by a very general continuous-time, multi-asset price impact model and show that the investor does no
worse if he narrows his search to deterministic strategies. . CARA has exponential utility of the form u (c) = 1− e−αc, so that
the absolute risk aversion, A (c) = −u′′(c)

u′(c) = α, a constant. Wikipedia Link on Risk Aversion.
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(Schied & Schöneborn 2009) use a stochastic control approach3, building upon the continuous time model

of (Almgren 2003), and show that the value function and optimal control satisfy certain nonlinear parabolic

partial differential equations that can be solved numerically. (Kato 2014) develops a mathematical model of

optimal execution, by formulating it as a stochastic control problem in the continuous time domain. (Gatheral

& Schied 2011) find a closed-form solution for the optimal trade execution strategy in the Almgren-Chriss

framework assuming the underlying unaffected stock price (stock price before the impact or before the

transaction occurs) process is a GBM; (Schied 2013) investigates the robustness of this strategy with respect

to misspecification of the law of the underlying unaffected stock price process. (Guo & Zervos 2015) study

the optimal execution problem in the context of a continuous time model with multiplicative price impact,

involving singular control rather than absolutely continuous control. 4

Building on empirical evidence (Lillo, Farmer & Mantegna 2003) that instantaneous market impact is

a strongly concave function of the volume, well approximated by a power law function at least for trading

rates that are not too high; (Curato, Gatheral & Lillo 2017) find that the discretized cost function exhibits a

rugged landscape, with many local minima separated by peaks. (Huberman & Stanzl 2004) provide theoretical

arguments showing that in the absence of quasi-arbitrage (availability of a sequence of round-trip trades that

generate infinite expected profits with an infinite Sharpe ratio, that is infinite expected profits per unit of risk),

permanent price-impact functions must be linear; though empirical investigations suggest that the shape of

the limit order book (LOB) can be more complex (Hopman 2007). (Gabaix, Gopikrishnan & Stanley 2006)

present a theory in which spikes in trading volume and returns, and hence stock market volatility, are created

by a combination of news and the trades of large investors explaining the power law distribution of price

impact. (Brunnermeier & Pedersen 2005; Carlin, Lobo & Viswanathan 2007) are extensions to situations

with several competing traders, wherein if one trader is forced to liquidate his holdings, other traders also

sell creating downward price pressure and buy back the assets later at a lower price.

In contrast to many studies, where the dynamics of the asset price process is taken as a

given fundamental, (Obizhaeva & Wang 2013) proposed a market impact model that derives its

dynamics from an underlying model of a LOB. In this model, the ask part of the LOB consists

of a uniform distribution of shares offered at prices higher than the current best ask price.
3(Wikipedia Link on Stochastic Control: Stochastic control or stochastic optimal control is a subfield of control theory that

deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system.)
4 In classical control problems (Shreve 1988), the cumulative displacement of the state, caused by control, is the integral of

the control process (or some function of it), and so is absolutely continuous. In impulse control, this cumulative displacement

has jumps, between which it is either constant or absolutely continuous. Bounded variation control (defined to include any

stochastic control problem in which one restricts the cumulative displacement of the state caused by control to be of bounded

variation on finite time intervals) admits both these possibilities and also the possibility that the displacement of the state

caused by the optimal control is singularly continuous, at least with positive probability over some interval of time.
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(Alfonsi, Fruth & Schied 2010) extend this by allowing for a general shape of the LOB defined via a

given density function, which can accommodate empirically observed LOB shapes and obtain a nonlinear

price impact of market orders. (Predoiu, Shaikhet & Shreve 2011) derive optimal strategies, (under a general

shape of the LOB), that are a mixture of lump purchases and continuous purchases with the rate of purchase

set to match the order book resilience. (Fruth, Schöneborn & Urusov 2014) analyze optimal strategies for a

risk neutral investor when liquidity varies deterministically (liquidity is time dependent; depth and resilience

can be independently time-dependent in contrast to the LOB model of Obizhaeva & Wang 2013) and find

that in the case of extreme changes in liquidity, it can even be optimal to completely refrain from trading in

periods of low liquidity. Empirical studies based on the LOB model are (Biais, Hillion & Spatt 1995; Potters

& Bouchaud 2003; Bouchaud, Gefen, Potters & Wyart 2004; and Weber & Rosenow 2005).

A related strand of literature looks at models of the LOB from the perspective of dealers seeking to submit

optimal strategies (maximize the utility of total terminal wealth) of bid and ask orders. (Ho & Stoll 1981)

analyze the optimal prices for a monopolistic dealer in a single stock when faced with a stochastic demand to

trade, modeled by a continuous time Poisson jump process, and facing return uncertainty, modeled by diffu-

sion processes. (Ho and Stoll 1980), consider the problem of dealers under competition (each dealer’s pricing

strategy depends not only on his own current and expected inventory position and his other characteristics,

but also on the current and expected inventory and other characteristics of the competitor) and show that

the bid and ask prices are shown to be related to the reservation (or indifference) prices of the agents.

(Cont, Stoikov & Talreja 2010) describe a stylized model for the dynamics of a limit order book, where

the order flow is described by independent Poisson processes and estimate the model parameters from high-

frequency order book time-series data from the Tokyo Stock Exchange. (Cont, Kukanov & Stoikov 2014)

study the price impact of order book events - limit orders, market orders, and cancellations - using the NYSE

Trades and Quotes data for fifty randomly selected stocks. (Avellaneda & Stoikov 2008) combine the utility

framework with the microstructure of actual limit order books, as described in the econo-physics literature,

to infer reasonable arrival rates of buy and sell orders; (Du, Zhu & Zhao 2016) extend the price dynamics

to follow a GBM in which the drift part is updated by Bayesian learning in the beginning of the transaction

day to capture the trader’s estimate of other traders’ target sizes and directions.

(Cont & Kukanov 2017) focus on the order placement problem, which is to choose an order type - market

or limit order - and which trading venue(s) to submit it to, when there are multiple alternatives. A numerical

algorithm for solving the order placement problem in a general case is provided using a robust modification of

the Robbins-Monro stochastic approximation technique (Robbins & Monro 1951; Nemirovski, Juditsky, Lan

& Shapiro 2009). (Guo, de Larrard & Ruan 2017) derive optimal placement strategies for both static and

dynamic cases (in the static case, as opposed to the dynamic case, a strategy is completely decided before

execution takes place, that is at t = 0, and is unchanged over the entire order internal), under a correlated
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random walk model, with mean-reversion for the best ask/bid price.

While our work focuses on separating impact and timing in the (Bertsimas & Lo 1998)

framework; a natural and interesting continuation would be to extend this separation to models

of the limit order book discussed above (Obizhaeva & Wang 2013).

Models of market impact and the design of better trading strategies are becoming an integral part of

the present trend at automation and the increasing use of algorithms. (Jain 2005) assembles the dates of

announcement and actual introduction of electronic trading by the leading exchange of 120 countries to

examine the long term and medium term impact of automation. He finds that automation of trading on

a stock exchange has a long-term impact on listed firms’ cost of equity. (Hendershott, Jones & Menkveld

2011) perform an empirical study on New York Stock Exchange stocks and find that algorithmic trading and

liquidity are positively related. It is worth noting a contrasting result from an earlier study. (Venkataraman

2001) compares securities on the New York Stock Exchange (NYSE) (a floor-based trading structure with

human intermediaries, specialists, and floor brokers) and the Paris Bourse (automated limit-order trading

structure). He finds that execution costs might be higher on automated venues even after controlling for

differences in adverse selection, relative tick size, and economic attributes. This means fully automated

exchanges, which anecdotally seems to be the way ahead, need to take special care to formulate rules, to help

liquidity providers better control the risks of order exposure.

What this also means is that, the design of better strategies and models is crucial to survive

and thrive in this continuing trend at automation. Our paper aims to fill the gap in existing

models of trading costs, which are theoretically elegant but are not readily applicable to real life

trading situations, since they do not allow participants to gauge how they are performing in

comparison to the other participants with whom they are competing for liquidity. Our models

have a strong theoretical foundation but they can be applied to actual trading situations due to

the insights they provide to participants. In addition, our numerical framework can be be used

to obtain optimal execution schedules under any law of motion of prices.

3 Dynamic Recursive Trading Cost Model

A dynamic programming approach lends itself naturally to modeling optimal execution strategies (Bert-

simas & Lo 1998). They start with a simple arithmetic random walk for the law of motion of prices and later

extend it to a geometric Brownian motion. Closed form solutions for many scenarios and numerical solutions

follow quite easily.

Existing dynamic programming methods to optimizing trading costs and execution scheduling are of

limited use to practitioners and traders since they do not provide a way for them to understand how their

actions at each stage would affect the price (as opposed to the combined effect of everyone else or the market)
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and thereby pointing out specific aspects of the system that they can hope to influence. Hence, we start with

the benchmark dynamic programming problem and modify the reward function in the Bellman equation to

suit our innovation.

3.1 Notation for Optimal Trading using a Dynamic Programming Approach

• S̄, the total number of shares that need to be traded.

• T , the total duration of trading.

• N , the number of trading intervals.

• τ = T/N , the length of each trading interval. We assume the time intervals are of the same duration,

but this can be relaxed quite easily. In continuous time, this becomes, N → ∞, τ → 0.

• The time then becomes divided into discrete intervals, tk = kτ, k = 0, ..., N .

• For simplicity, let time be measured in unit intervals giving, t = 1, 2, ..., T .

• St, the number of shares acquired in period t at price Pt.

• P0 can be any reference price or benchmark used to measure the slippage. It is generally taken to be

the arrival price or the price at which the portfolio manager would like to complete the purchase of the

portfolio.

• Our objective is to formulate a trading trajectory, or a list of total pending shares, W1, ...,WT+1. Here,

Wt is the number of units that we still need to trade at time t. This would mean, W1 = S̄ and

WT+1 = 0 implies that S̄ must be executed by period T (we note this as an assumption that there will

be no unexecuted shares once the total time duration is completed; this would mean that the trading

schedule has to be determined to satisfy the constraint that there are no shares left unexecuted at the

end of the total trading duration). Clearly, S̄ =
T∑

j=1

Sj . This can equivalently be represented by the list

of executions completed, S1, ..., ST . Here, Wt = Wt−1 − St−1 or St−1 = Wt−1 −Wt is the number of

units traded between times t − 1 and t at price Pt−1. That is we go from Wt−1 unexecuted shares at

time period t − 1 to Wt remaining shares at time t by filling St−1 shares at price Pt−1.Wt and St are

related as below.

Wt = S̄ −
t−1∑
j=1

Sj =

T∑
j=t

Sj , t = 1, ..., T.
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3.2 Benchmark Dynamic Programming Model

This is the simplest scenario where the trader would try to minimize the overall acquisition value of his

holdings. This is also the benchmark scenario in (Bertsimas & Lo 1998). In this case, securities are being

bought. It is then logical to set a no sales constraint when the objective is to buy securities. The baseline

objective function and constraints are written as,

min
{St}

E1

[
T∑

t=1

StPt

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

The law of motion of price, Pt for the buy scenario can be written as,

Pt = Pt−1 + θSt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

We also follow the convention that the shares are positive when we buy and negative when we sell. The law

of motion of price, Pt for the sell scenario then becomes,

Pt = Pt−1 − θSt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0

This price evolution and convention for the buy and sell scenarios ensures that the buyer and the seller have

the same price. A trade happens only when the buyer and seller agree upon the price and they both face

the same shock in this case. In the rest of the discussion we only consider the price evolution for the buy

scenario since this treatment applies with simple modifications when securities are sold.

The law of motion includes two distinct components: the dynamics of Pt in the absence of our trade, (the

trades of other may be causing prices to fluctuate) and the impact that our trade of St shares has on the

execution price Pt. This simple price change relationship assumes that the former component is given by an

arithmetic random walk and the latter component is a linear function of trade size so that a purchase of St

shares may be executed at the prevailing price plus an impact premium of θSt. Here, θ captures the effect of

transaction size on the price. In the absence of this transaction, the price process evolves as a pure arithmetic

random walk. This then implies that from any participants view, the sum of all the price movements or the

new price levels established by all other participants evolves as a random walk. For simplicity, we ignore the

no sales constraint, St ≥ 0.

The Bellman equation is based on the observation that a solution or optimal control {S∗
1 , S

∗
2 , ..., S

∗
T } must
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also be optimal for the remaining program at every intermediate time t. That is, for every t, 1 < t < T

the sequence
{
S∗
t , S

∗
t+1, ..., S

∗
T

}
must still be optimal for the remaining program Et

[∑T
k=t PkSk

]
. The below

relates the optimal value of the objective function in period t to its optimal value in period t+ 1 :

Vt (Pt−1,Wt) = min
{St}

Et [PtSt + Vt+1 (Pt,Wt+1)]

3.3 Terminology and High-level Mathematical Expressions

We now introduce some terminology used throughout the discussion.

1. Total Slippage - The overall price move on the security during the order duration. This is also a proxy

for the implementation shortfall (Perold 1988 and Treynor 1981). It is worth mentioning that there are

many similar metrics used by various practitioners and this concept gets used in situations for which it is

not the best suited (Yegerman and Gillula 2014). While the usefulness of the Implementation Shortfall,

or slippage, as a measure to understand the price shortfalls that can arise between constructing a

portfolio and while implementing it, is not to be debated, slippage need to be supplemented with more

granular metrics when used in situations where the effectiveness of algorithms or the availability of

liquidity need to be gauged.

2. Market Impact (MI) - The price moves caused by the executions that comprise the order under consid-

eration. In short, the MI is a proxy for the impact on the price from the liquidity demands of an order.

This metric is generally negative (by using a convention to show it as a cost; below we consider it as

positive quantity for simplicity) or zero since in most cases, the best impact we can have is usually no

impact.

3. Market Timing - The price moves that happen due to the combined effect of all the other market

participants during the order duration.

4. Market Impact Estimate (MIE) - This is the estimate of the Market Impact, explained in point two

above, based on recent market conditions. The MIE calculation is the result of a simulation which

considers the number of executions required to fill an order and the price moves encountered while

filling this order, depending on the market micro-structure as captured by the trading volume and the

price probability distribution including upticks and down-ticks over the past few days. This simulation

can be controlled with certain parameters that dictate the liquidity demanded on the order, the style of

trading, order duration, market conditions as reflected by start of trading and end of trading times. In

short, the MIE is an estimated proxy for the impact on the price from the liquidity demands of an order.

Such an approach holds the philosophical viewpoint that making smaller predictions and considering
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their combined effect would result in lesser variance as opposed to making a large prediction; estimations

done over a day as compared to estimations over a month, say. A geometrical intuition would be that

fitting more lines (or curves) over a set of points would reduce the overall error as compared to fitting

lesser number of lines (or curves) over the same set of points. When combining the results of predictions,

of course, we have to be mindful of the errors of errors, which can get compounded and lead the results

astray, and hence, empirical tests need to be done to verify the suitability of such a technique for the

particular situation.

5. Market Timing Estimate (MTE) - This is the estimate of the Market Timing, explained in point three

above, based on recent market conditions. The MTE calculation follows from the price volatility and

hence longer the duration, we can expect the timing to be higher. It is helpful to consider an upper

bound and lower bound for the MTE or in other words a range for the MTE for the duration of trading

over which we are estimating the market impact.

6. All these variables are measured in basis points to facilitate ease of comparison and aggregation across

different groups. It is possible to measure these in cents per share and also in dollar value or other

currency terms.

7. The following equations, expressed in simple mathematical terms to facilitate easier understanding,

govern the relationships between the variables mentioned above.

Total Slippage = Market Impact + Market Timing

{Total Price Slippage = Your Price Impact + Price Impact From Everyone Else (Price Drift)}

Market Impact Estimate = Market Impact Prediction = f (Execution Size, Liquidity Demand)

Execution Size = g(Execution Parameters, Market Conditions)

Liquidity Demand = h(Execution Parameters, Market Conditions)

Execution Parameters <->vector comprising (Order Size, Security, Side, Trading Style, Timing Decisions)

Market Conditions <-> vector comprising (Price Movement, Volume Changes, Information Set)

Here, f, g, h are functions. We could impose concavity conditions on these functions, but arguably, similar

results are obtained by assuming no such restrictions and fitting linear or non-linear regression coefficients,

which could be non-concave or even discontinuous allowing for jumps in prices and volumes. The specific

functional forms used could vary across different groups of securities or even across individual securities or

even across different time periods for the same security. The crucial aspect of any such estimation is the

comparison with the costs on real orders, as outlined earlier. Simpler modes are generally more helpful in

interpreting the results and for updating the model parameters. (Hamilton 1994) and (Gujarati 1995) are
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classic texts on econometric methods and time series analysis that accentuate the need for parsimonious

models.

3.4 The Implementation Shortfall

As a refresher, the total slippage or implementation shortfall is derived below with the understanding

that we need to use the Expectation operator when we are working with estimates or future prices. (Kissell

2006) provides more details including the formula where the portfolio may be partly executed.

Paper Return = S̄PT − S̄P0

Real Portfolio Return = S̄PT −

(
T∑

t=1

StPt

)

Implementation Shortfall = Paper Return − Real Portfolio Return

=

(
T∑

t=1

StPt

)
− S̄P0

This can be written as,

Implementation Shortfall =

(
T∑

t=1

StPt

)
− S̄P0

=

(
T∑

t=1

StPt

)
− P0

(
T∑

t=1

St

)
= S1P1 + S2P2 + ...+ STPT − S1P0 − S2P0 − ...− STP0

= S1 (P1 − P0) + S2 (P2 − P0) + ...+ ST (PT − P0)

Implementation Shortfall = S1 (P1 − P0) +

S2 (P2 − P1) + S2 (P1 − P0) +

S3 (P3 − P2) + S3 (P2 − P1) + S3 (P1 − P0) +

... +

ST (PT − PT−1) + ST (PT−1 − PT−2) + ...+ ST (P1 − P0)

The innovation we introduce would incorporate our earlier discussion about breaking the total impact or

slippage, Implementation Shortfall, into the part from the participants own decision process, Market Impact,

and the part from the decision process of all other participants, Market Timing. This Market Impact, would
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capture the actions of the participant, since at each stage the penalty a participant incurs should only be

the price jump caused by their own trades and that is what any participant can hope to minimize. A subtle

point is that the Market Impact portion need only be added up when new price levels are established. If the

price moves down and moves back up (after having gone up once earlier and having been already counted

in the Impact), we need not consider the later moves in the Market Impact (and hence implicitly left out

from the Market Timing as well). This alternate measure would only account for the net move in the prices

but would not show the full extent of aggressiveness and the push and pull between market participants and

hence is not considered here, though it can be useful to know and can be easily incorporated while running

simulations. We discuss two formulations of our measure of the Market Impact in the next two subsections.

The reason for calling them simple and complex will become apparent as we continue the discussion.

3.5 Market Impact Simple Formulation

The simple market impact formulation does not consider the impact of the new price level established on

all the future trades that are yet to be done. From a theoretical perspective it is useful to study this since

it provides a closed form solution and illustrates the immense practical application of separating impact and

timing. This approach can be a useful aid in markets that are clearly not trending and where the order size

is relatively small compared to the overall volume traded, ensuring that any new price level established does

not linger on for too long and prices gets reestablished due to the trades of other participants. This property

is akin to checking that shocks to the system do not take long to dissipate and equilibrium levels (or rather

new pseudo equilibrium levels) are restored quickly. Our measure of the Market Impact then becomes,

Market Impact =
T∑

t=1

{max [(Pt − Pt−1) , 0]St}

The Market Timing is then given by,

Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 −

T∑
t=1

{max [(Pt − Pt−1) , 0]St}

For illustration, let us consider some examples,

1. When all the successive price moves are above their corresponding previous price, that is max [(Pt − Pt−1) , 0] =

(Pt − Pt−1), we have

Market Impact =

T∑
t=1

{max [(Pt − Pt−1) , 0]St}

= S1 (P1 − P0) + S2 (P2 − P1) + S3 (P3 − P2) + ... + ST (PT − PT−1)
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Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 − S1 (P1 − P0)− S2 (P2 − P1)− S3 (P3 − P2)− ... − ST (PT − PT−1)

= S1P0 + S2P1 + S3P2 + ... + STPT−1 − S̄P0

= S2 (P1 − P0) + S3 (P2 − P0) + ... + ST (PT−1 − P0)

2. Some of the successive prices are below their corresponding previous price, let us say, (P2 < P1) and (P3 < P2),

we have

Market Impact =

T∑
t=1

{max [(Pt − Pt−1) , 0]St}

= S1 (P1 − P0) + S2 (0) + S3 (0) + ... + ST (PT − PT−1)

Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 − S1 (P1 − P0)− S2 (0)− S3 (0)− ... − ST (PT − PT−1)

= S2P2 + S3P3 + S1P0 + S4P3 + S5P4 + ... + STPT−1 − S̄P0

= S2 (P2 − P0) + S3 (P3 − P0) + S4 (P3 − P0) + S5 (P4 − P0) + ... + ST (PT−1 − P0)

3.6 Market Impact Complex Formulation

Another measure of the Market Impact can be formulated as below which represents the idea that when a

participant seeks liquidity and establishes a new price level, all the pending shares or the unexecuted program

is affected by this new price level. This is a more realistic approach since the action now will explicitly affect

the shares that are not yet executed. This measure can be written as,

Market Impact =
T∑

t=1

{max [(Pt − Pt−1) , 0]Wt}

The Market Timing is then given by,

Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 −

T∑
t=1

{max [(Pt − Pt−1) , 0]Wt}

For illustration, let us consider some examples,
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1. When all the successive price moves are above their corresponding previous price, that is max [(Pt − Pt−1) , 0] =

(Pt − Pt−1), we have

Market Impact =

T∑
t=1

{max [(Pt − Pt−1) , 0]Wt}

= W1 (P1 − P0) +W2 (P2 − P1) +W3 (P3 − P2) + ... +WT (PT − PT−1)

Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 −W1 (P1 − P0)−W2 (P2 − P1)−W3 (P3 − P2)− ... −WT (PT − PT−1)

=

[
T∑

t=1

(Wt −Wt+1)Pt

]
−W1P0 −W1 (P1 − P0)

−W2 (P2 − P1)−W3 (P3 − P2)− ... −WT (PT − PT−1)

= (W1 −W2)P1 + (W2 −W3)P2 + ...+ (WT −WT+1)PT

−W1P0 −W1 (P1 − P0)−W2 (P2 − P1)−W3 (P3 − P2)− ... −WT (PT − PT−1)

= 0

2. Some of the successive prices are below their corresponding previous price, let us say, (P2 < P1) and (P3 < P2),

we have

Market Impact =

T∑
t=1

{max [(Pt − Pt−1) , 0]Wt}

= W1 (P1 − P0) +W2 (0) +W3 (0) + ... +WT (PT − PT−1)

Market Timing = Implementation Shortfall − Market Impact

=

(
T∑

t=1

StPt

)
− S̄P0 −W1 (P1 − P0)−W2 (0)−W3 (0)− ... −WT (PT − PT−1)

=

[
T∑

t=1

(Wt −Wt+1)Pt

]
−W1P0 −W1 (P1 − P0)

−W2 (0)−W3 (0)− ... −WT (PT − PT−1)

= (W1 −W2)P1 + (W2 −W3)P2 + ...+ (WT −WT+1)PT

−W1P0 −W1 (P1 − P0)−W2 (0)−W3 (0)− ... −WT (PT − PT−1)

= −W2P1 +W2P2 −W3P2 +W3P3

= W2 (P2 − P1) +W3 (P3 − P2)
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3.7 Trading Costs as a Zero Sum Game

A formal study of trading costs in the financial markets using the tools of game theory can lead to many

interesting conclusions (Fama 1970 is a discussion of fair games and efficient markets; Kyle 1985, Foster &

Viswanathan 1990 solve for the Nash equilibrium when trading is viewed as a game between market makers

and traders; Hill 1990 considers transaction costs using a game theoretic model with opportunistic behavior;

Klemperer 2004 is an overview of how auctions can explain financial crashes and trading frenzies). Even

without a set up specific to game theory (that is the notation, terminology and related paraphernalia, which

we will pursue in a later game theory only paper), one of the results we obtain, though fairly evident but

perhaps surprising given the extent of trading that takes place in today’s markets is that, in any given time

period the sum of market impact and the sum of market timing across all market participants equals zero.

This is immediately obvious in the case that there are only two participants (one is the buyer, the other

is the seller and without two participants we do not have a market or a trade) and there is only one single

interval, since negative implementation shortfall for the buyer shows up as positive implementation shortfall

for the seller; the impact for the buyer shows up as timing for the seller and vice versa. We note that the total

amount bought in any interval is equal to the total amount sold. When there are more than two participants

and multiple intervals, if we consider the actions in each interval and add up the impact and timing figures

across everyone, it shows the zero sum nature of the trading game (For different types of zero sum games

and methods of solving them, see Brown 1951; Gale, Kuhn & Tucker 1951; Von Neumann & Morgenstern

1953; Von Neumann 1954; Rapoport 1973; Crawford 1974; Laraki & Solan 2005; Hamadène 2006); (Bodie &

Taggart 1978; Bell & Cover 1980; Turnbull 1987; Hill 2006; Chirinko & Wilson 2008 consider zero sum games

in the financial context). The result holds for both the simple and complex formulations of market impact.

Theorem 1. Trading costs are a zero sum game. The sum of market impact and market timing across all

participants, in any given time interval, should equal zero.

Total Market Impact + Total Market Timing = 0

Proof. See Appendix 11.1.

Though we refrain from a longer discussion for the sake of brevity; it should be immediately apparent that

the zero sum nature of trading costs is applicable outside the financial markets, to all manner of trades within

international / intra-national finance and the exchange of all types of goods and services. Another aspect

we point out is the difference in the extent of how much timing and impact might vary between financial
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markets and trading in other products. The relative ease with which products can be liquidated and / or the

extent to which they are either consumption or investment goods, affects this property (Kashyap 2014).

4 Alternative and Practical Dynamic Market Impact Model

We discuss the benchmark law of motion of prices while optimizing the simple and complex market impact

formulations in this section. More complex extensions of the law of motion of prices are considered in section

6.

4.1 Simple Formulation of the Benchmark Law of Price Motion

Incorporating the Simple Market Impact formulation from section 3.5, the benchmark objective function

and the Bellman equation from section 3.2 can be modified as,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]St}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = Pt−1 + θSt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0 , εt ∼ N
(
0, σ2

ε

)
The Bellman equation then becomes,

Vt (Pt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}St + Vt+1 (Pt,Wt+1)]

One additional constraint that is necessary is to restrict the amount of shares available for

trading in any time period, when the price in that time period drops in comparison to the

previous time period. The algorithm in section 5 shows how these constrainst can be set. This

is a practical consideration, since a drop in price is impact for the sellers and timing for

the buyers (as a reminder, we are buyers). Hence when the price decreases in comparison to

the previous time period, the amount of shares or liquidity is limited and the seller decides

how much to make available. When prices are rising, we can justify not having that criteria,

since the buyer can bid up the price and decide how much impact we want to incur. A more

thorough approach would ensure that the liquidity follows a process of its own and captures

this dynamic of sellers and buyers being able to prop the prices from falling further or rising

higher respectively. In the extension we consider in section 6.3, some of these aspects can be

factored in.
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By starting at the end, (time T ) and applying the modified Bellman equation and the law of motion for

Pt, the relation between pending and executed shares, and the boundary conditions recursively, the optimal

control can be derived as functions of the state variables that characterize the information that the investor

must have to make his decision in each period. In particular, the optimal value function, VT (· · · ), as a

function of the two state variables PT−1 and WT is given by,

VT (PT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}ST ]

Here, the remaining shares WT+1 must be zero since there is no choice but to execute all the remaining

shares, WT . We then have the optimal trade size, S∗
T =WT and an expression for VT as,

VT (PT−1,WT ) = ET [max {(θWT + εT ) , 0}WT ]

Proposition 1. The value function for the last but one time period is convex and can be written as,

VT−1 (PT−2,WT−1) = min
{ST−1}

[ST−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}]

Here, ψ (u) = u+ φ (u) /Φ(u) , ξ =
θ

σε
,

Also, φ and Φ are the standard normal Probability Density Function, PDF, and Cumulative Distribution

Function CDF, respectively.

Proof. See Appendix 11.2.

Figure 3 illustrates the shape of some combinations of the distribution functions that we are working

with. For the value function we have, the condition for convexity can be derived as θ > (3σε/4).

Proposition 2. The number of shares to be executed in each time period follows a linear law. S∗
T−1 =

W ∗
T−1/2, . . . , S∗

T−K−1 =WT−K−1/ (K + 2) , S∗
T−K =WT−K/ (K + 1) and the corresponding value func-

tions are,

VT−K−1 (PT−K−2,WT−K−1) = σεWT−K−1

 θ

σε

WT−K−1

(K + 2)
+
φ
(

θ
σε

WT−K−1

(K+2)

)
Φ
(

θ
σε

WT−K−1

(K+2)

)
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Proof. This is shown using induction in Appendix 11.3

We can see that a minimum exists at each stage. The simple solution follows from the linear rule where

the price impact θSt does not depend on either the prevailing price, Pt−1, or the size of the unexecuted order

Wt and hence the price impact function is the same in each period and independent from one period to the

next. It is easily shown that, S∗
1 = S∗

2 = · · · = S∗
T = S̄/T . This simply means that the best execution

strategy is simply to divide the total order or the total shares S̄ into T equal amounts and trade them at

regular intervals. (Bertsimas & Lo 1998) has a more detailed discussion. Supposing a closed form solution

was absent, we could approximate the solution (numerically solved) using S∗
T−1 ≈ ξ0+ ξ1WT−1+ ξ2 (WT−1)

2

or S∗
T−1 ≈ ξ0 (WT−1)

ξ1 . We can also set S∗
T−1 ≈ ω1 (WT−1) using any well behaved (continuous and

differentiable) function, ω1. We could also include the last known price, Pt−1, or other state variables into

the above approximation. We discuss this technique in detail including numerical examples in section 5.

This numerical approximation approach is simple to implement and lends itself easily to solutions even in

the more complex laws of motion to follow in section 6.

Going forward, to lighten the notion, we will drop the * superscript on the number of shares to be executed

in each time period, S∗
T , where there is less likelihood of confusion.

4.2 Complex Formulation of the Benchmark Law of Price Motion

Incorporating the Complex Market Impact formulation from the earlier section 3.6, the objective function

and the Bellman equation from section 3.2 can be modified as,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]Wt}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = Pt−1 + θSt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0 , εt ∼ N
(
0, σ2

ε

)
The Bellman equation then becomes,

Vt (Pt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}Wt + Vt+1 (Pt,Wt+1)]
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The optimal value function, VT (· · · ), as a function of the two state variables PT−1 and WT is given by,

VT (PT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}WT ]

Here, the remaining shares WT+1 must be zero since there is no choice but to execute all the remaining

shares, WT . We then have the optimal trade size, S∗
T =WT and an expression for VT as,

VT (PT−1,WT ) = ET [max {(θWT + εT ) , 0}WT ]

Proposition 3. The value function for the last but one time period is a convex function with a unique

minimum, since it is the sum of the portions shown to be convex above (Proposition 1), another convex

function and a linear component.

VT−1 (PT−2,WT−1) = min
{ST−1}

[WT−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}]

Here, ψ (u) = u+ φ (u) /Φ(u) ; ξ =
θ

σε
; Note that, WT−1 = ST−1 +WT

The number of shares to be executed in subsequent time periods and the corresponding value function are

obtained by solving,

WT−1 +
ξ (WT−1 − ST−1)

2
φ (ξ {WT−1 − ST−1})

Φ (ξ {WT−1 − ST−1})
+ (WT−1 − ST−1)

[
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

]2
=

2 (WT−1 − ST−1) +
1

ξ

φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

+
ξWT−1ST−1φ (ξST−1)

Φ (ξST−1)
+WT−1

[
φ (ξST−1)

Φ (ξST−1)

]2

Proof. See Appendix 11.4.

The simple rule established earlier, ST−1 = WT−1/2, no longer applies here and we need numerical

solutions at each stage. The complexity that gets included in this scenario, when we consider the rest of

the unexecuted program into the market impact function, can be seen from this expression. We illustrate

numerical techniques for obtaining optimal executions in the next section (5).
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5 Numerical Framework for Optimal Execution

Below we develop a numerical framework that can provide optimal executions for any law of motion

of prices. We specifically illustrate how we can solve the formulations from section 4 with this numerical

technique. It should shortly become clear how this solution technique can be applied under any scenario

of price changes including multiple sources of uncertainty. The central idea is similar to the American

option pricing methodology (Longstaff & Schwartz 2001) that approximates the ex post realized payoffs from

continuation on functions of the values of the state variables. In our case, we use least squares to approximate

the conditional expectation of the number of shares to execute as a function of the state variables at each

stage. The following points capture a high level essence of the algorithm.

5.1 Optimal Execution Algorithm

1. We create a matrix with the number of columns equal to the number of time periods and number of rows

equal to the number of different price paths we desire (total number of simulations we are running).

The first column in the matrix corresponds to the starting price, P0 and the total number of shares to

execute, W1.

2. We then randomly sample the number of shares to execute during the next time period from a uniform

distribution. During this process, we can enforce constraints on the minimum or maximum amounts

we wish to execute during each time period by including them as the lower and upper limits of the

uniform distribution.

3. The number of shares to execute, the price at the start of the time period and the price innovation sam-

pled from another suitable distribution (εt ∼ N
(
0, σ2

ε

)
in our case) incorporated into the corresponding

law of motion give us the number of shares that still remain to be executed after the end of this time

period and the starting price point for the next time period. Any additional sources of uncertainty can

be included to obtain the next price level.

4. Continuing this iteratively, we obtain a matrix where each node (row and column) represents a different

scenario of price and remaining number of shares to execute before the start of the next time period.

5. Starting from the last time period, at each node, we compute the optimal number of shares to execute

during that time period and later ones with complete knowledge of the innovations (εt) that unfold

on that path, using well-known optimization techniques. For the complex impact function, we use the

solnp package in R (Ghalanos, Theussl & Ghalanos 2012; Ye 1988); for the simple impact function,

we allocate the remaining shares to the remaining time periods based on whether the corresponding

innovations are negative and how negative they are.
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(a) Considering the below example of obtaining the optimal executions when we are minimizing the

complex impact function under the benchmark law of price motion, we write the objective function

as,

min
{St}

t=T∑
t=1

max (θSt + εt, 0)

j=T∑
j=t

Sj




Here,
∑t=T

t=1 St = W1 ; St,W1 ≥ 0 and θ, εt ∈ R, that is they are real numbers. Note that,

Pt − Pt−1 = θSt + εt

(b) As an example, for T = 3 we get,

min
{S1,S2,S3}

[max (θS1 + ε1, 0) (S1 + S2 + S3) + max (θS2 + ε2, 0) (S2 + S3) + max (θS3 + ε3, 0) (S3)]

(c) For the last time period, the optimal number of shares, S∗
3 = S3. When we are time period,

T = 2,we optimize S2, S3 using the Rsolnp library such that the following function is minimized,

min
{S2,S3}

[max (θS2 + ε2, 0) (S2 + S3) + max (θS3 + ε3, 0) (S3)]

Here,
∑t=3

t=2 St =W2 ; W2 =W1−S1; W2 would have a different value on each price path simulation

or for each row in our matrix.

• Considering the below example of obtaining the optimal executions when we are minimizing the

simple impact function under the benchmark law of price motion, we write the objective function

as,

min
{St}

[
t=T∑
t=1

{max (θSt + εt, 0) (St)}

]

Here,
∑t=T

t=1 St = W1 ; St,W1 ≥ 0 and θ, εt ∈ R, that is they are real numbers. Note that,

Pt − Pt−1 = θSt + εt

• As an example, for T = 3 we get,

min
{S1,S2,S3}

[max (θS1 + ε1, 0) (S1) + max (θS2 + ε2, 0) (S2) + max (θS3 + ε3, 0) (S3)]

• For the last time period, the optimal number of shares, S∗
3 = S3. When we are time period,

T = 2,we optimize S2, S3 such that the following function is minimized,

min
{S2,S3}

[max (θS2 + ε2, 0) (S2) + max (θS3 + ε3, 0) (S3)]
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Here,
∑t=3

t=2 St = W2 ; W2 = W1 − S1; W2 would have a different value on each price path

simulation or for each row in our matrix. The remaining shares W2 are distributed to time periods

that have negative innovations, starting with earlier time periods, until the execution size times

the impact parameter θ plus the innovation equals zero for a particular time period. When this

condition is satisfied, we incur zero impact {θS1 + ε1 = 0 ⇒ Pt − Pt−1 = 0}. After the execution

size times the impact parameter θ plus the innovation equals zero for all time periods, any further

leftover shares are allocated, while giving precedence to earlier time periods and then allocating

to subsequent time periods, up-to the maximum execution limit for each time period, since the

execution of these shares will cause an equal jump up in the prices (having an equal impact in the

objective function) and it is better to execute sooner rather than later.

6. We then run a regression across all the rows in the matrix (this is a cross sectional regression) with the

independent variables as the price and the number of shares remaining to be executed before the time

period starts and the optimal number of shares to execute during that time period as the dependent

variable.

• We use a regression model such as the one below. It should be clear that we can extend this to

purely non-linear regressions or a combination of linear and non-linear components.

E [St |Wt,Pt−1 ] = β0 + β1Wt + β2W
2
t + β3Pt−1 + β4P

2
t−1 + β5WtPt−1

For T = 2,

E [S2 |W2,P1 ] = β0 + β1W2 + β2W
2
2 + β3P1 + β4P

2
1 + β5W2P1

7. Likewise, we continue backwards in time and obtain regression co-efficients for each time period. The

regression co-efficients can then be used to calculate the optimal number of shares before the start of

each time period. At each stage, we adjust the number of shares remaining before the time period

starts based on the difference between the simulated number of shares to execute and the conditional

expected value of the number shares to execute as given by the above regression equation. For T = 2,

this adjusted number of remaining shares, Ŵ2, is given by,

Ŵ2 = S3 + (S2 − E [S2 |W2,P1 ])

5.2 Sample Results with Mean-Variance of Execution Costs

For the complex impact formulation, the table in (Figure 4) gives the regression coefficients when the number

of time periods, T = 20 and the total number of shares to execute is 100, 000. Starting with the initial time
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period in the first row, the optimal executions, the price path and other parameters are also shown. All

the parameter values are taken to be the same as the values in (Bertsimas & Lo 1998), to facilitate a

proper comparison. (Figure 5) shows the optimal execution schedules under different levels of minimum

and maximum number of shares to execute during each time period and different number of price paths or

simulation counts.

(Figure 6) compares the average and variance of the total impact costs of our numerical

methodology with the benchmark case in (Bertsimas & Lo 1998; also termed the naive strategy),

where the solution we get is to execute equal amount of shares in each time period. We report

the mean and variance over a simulation sample of 50,000 price paths. We see that the

benchmark case has a mean of around 5,262,583 which is comparable to the average execution

cost of 5,264,706 using the complex formulation; but the variance is significantly lower using

our methodology (769,801,363 in our case versus 1,120,457,643 in the benchmark model).

(Figure 6) also reports the multiple of ten percentile values for the executions costs. (Figure

7) shows the histograms of the total costs under the two techniques (the top histogram is for

the complex formulation). In addition, our methods are more realistic and adaptive, since

the execution amounts change every-time we use it, as the market moves and as our trading

progresses. Tailoring it to include additional state variables and capture other sources of

uncertainty is relatively straightforward.

Lastly to provide a better understanding of how execution costs change with changes in the different

parameters, in (Figure 8) we provide the average of the total execution costs, the simple impact costs, the

complex impact costs and the market timing costs across different parameter values, when we are optimizing

the complex formulation of the market impact. We impose non-negativity constraints on the execution

amounts while calculating the regression co-efficient; later when we use the regression coefficients to calculate

execution costs, we remove this restriction for some iterations; this parameter is captured as the maximum

and minimum number of shares we can trade in any given time period.

The following values of the parameters are used in the computations: we vary the volatility of the

stock price σ = {0.125, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75}, the impact parameter, θ =

{2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5}, the maximum and minimum number of shares we can execute

in any given time period, i.e, the liquidity, {6666, 13332, 19998, 26664, 3333} and {0,−10, 000}, and the num-

ber of simulations, {50000, 20000, 10000, 3000, 2000, 1000}. This gives a matrix of summary statistics with

around 93 different combinations for which we calculate the regression coefficients, the simple market impact

cost, the complex market impact cost and the total execution cost. It is immediately obvious that increasing

the impact parameter, θ, leads to an increase in the total executions costs. The increase in the price volatility

and the liquidity in each time period do not show such a clear pattern and further investigation is warranted.
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But we can expect that the greater uncertainty due to higher price volatility and lack of liquidity, would

force participants to trade greater amounts earlier in the trading horizon or as liquidity becomes available.

To calculate the regression coefficients in the quickest possible time, it would be helpful to build a decent

amount of computing infrastructure. Since each price path can be developed independently and the only

dependence across price paths is while doing the cross-sectional regressions, all the price paths and the

optimization at each time period can be done using parallel processing technology. If there are 20 time

periods and 1000 price paths, we would need to perform 20,000 Rsolnp optimization calls to compute all

the regression coefficients for the complex impact formulation. This is the most time consuming portion

of the algorithm and it is highly sensitive to the initial values provided for the routine. The calculation

time increases significantly with the number of price paths and time periods; this increase is linear with the

number of price paths but it can be more costly to perform the Rsolnp optimizations when the number of

time periods increase. To make the calculation engine more robust we also build rudimentary intelligence,

such that in case of any interruptions the system will revert back and resume the calculations from the last

clean state that was reached. We ran our simulations on an Intel four core windows 10 machine with 4.00

Gigabytes RAM and 2.4 Gigahertz processor speed. In the summary statistics below, we provide the time it

takes to calculate all the co-efficients.

To reduce the number of calculations, when we are looking to run optimal executions across hundreds

of different securities, we could create groups of securities based on similarties in starting prices, volatilities

and other paremeters and compute regression co-efficients for each group separately. Optimizing the simple

impact formulation takes considerably less time. The regression co-efficients, optimal executions, executions

costs and run times are summarized in (Figures 9, 10, 11). Another alternative to optimizing the complex

impact function (instead of the Rsolnp optimization) is to perform a one step ahead optimization. To

elaborate on this, at each step, we only look at whether the price went up or down and execute accordingly

with full foresight of only one time period. We then run the cross-sectional regressions based on the optimal

shares with just one time period look ahead. The regression co-efficients, optimal executions, executions costs

and run times are summarized in (Figures 12, 13, 14). It would be prudent to re-calibrate the regression

co-efficients periodically across all three formulations.

5.3 Actual Trading Costs Attribution

The following diagram (Figure 15) illustrates the distribution of actual trading costs (These metrics are

for live institutional trades from a global sample measured in basis points on the y axis; the x-axis has the

costs for two months: April and May 2015; the size of the bubble represents the trade size) based on the our

attribution methodology. (Kashyap 2015, 2016) are empirical examples of applying the above methodology

to recent market events, wherein, Mincer Zarnowitz type regressions (Mincer & Zarnowitz 1969) are run
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to establish the accuracy of the estimates. These studies demonstrate the effectiveness of this approach in

helping us better understand and analyze real life trading situations.

6 Extensions to the Benchmark Law of Price Motion

6.1 Law of Price Motion with Additional Source of Uncertainty

6.1.1 Simple Formulation

The law of price motion can be changed to include an additional source of uncertainty, Xt, which could

represent changing market conditions or private information about the security. We assume that this state

variable Xt, is serially-correlated and γ captures its sensitivity to the price movements. Incorporating this,

the objective function and the Bellman equation become,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]St}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = Pt−1 + θSt + γXt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0

Xt = ρXt−1 + ηt , ρ ∈ (−1, 1) ≡ AR(1) Process

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vt (Pt−1, Xt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}St + Vt+1 (Pt, Xt,Wt+1)]

By starting at the end, (time T ) we have,

VT (PT−1, XT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}ST ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT as,

VT (PT−1, XT−1,WT ) = ET [max {(θWT + εT + γXT ) , 0}WT ]
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Proposition 4. The number of shares to be executed in each time period follows a linear law. ST−1 =

WT−1/2 . . . ST−K−1 =WT−K−1/ (K + 2) and the corresponding value function is

VT−K−1 (PT−K−2, XT−K−2,WT−K−1) =
θ

(K + 2)
W 2

T−K−1 + αK+1WT−K−1 + βWT−K−1

φ
(

θWT−K−1+(K+2)αK+1

(K+2)β

)
Φ
(

θWT−K−1+(K+2)αK+1

(K+2)β

)

Here, αK+1 = γρXT−K−2, β =
√
γ2σ2

η + σ2
ε

Proof. See Appendix 11.5.

The simple rule established earlier, ST−1 = WT−1/2, suffices even here, with a similar reasoning that

follows from the independence of the price impact from either the prevailing price or the size of the unexecuted

order.

6.1.2 Complex Formulation

Incorporating this additional source of uncertainty into the complex market impact formulation, the

objective function and the Bellman equation become,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]Wt}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = Pt−1 + θSt + γXt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0

Xt = ρXt−1 + ηt , ρ ∈ (−1, 1) ≡ AR(1) Process

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vt (Pt−1, Xt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}Wt + Vt+1 (Pt, Xt,Wt+1)]
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By starting at the end, (time T ) we have,

VT (PT−1, XT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}WT ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT as,

VT (PT−1, XT−1,WT ) = ET [max {(θWT + εT + γXT ) , 0}WT ]

Proposition 5. The number of shares to be executed in each time period and the corresponding value function

are obtained by solving,

θWT−1 + βWT−1

 θ

β

−
(

θST−1+α
β

)
φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

) −

 φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

)


2



−2θ (WT−1 − ST−1)− α+ β

−
φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

)
+
θ (WT−1 − ST−1)

β


(

θ(WT−1−ST−1)+α
β

)
φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

) +

 φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

)


2

 = 0

Proof. See Appendix 11.6.

The simple rule established earlier, ST−1 = WT−1/2, no longer suffices here and we need numerical

solutions at each stage of the recursion.

6.2 Linear Percentage Law of Price Motion

6.2.1 Simple Formulation

A law of motion based on an arithmetic random walk has a positive probability of negative prices and it

also implies that the Market Impact has a permanent effect on the prices. The other issue is that Market

Impact as a percentage of the execution price is a decreasing function of the price level, which is counter-

factual. Hence we let the execution price be comprised of two components, a no-impact price P̃t, and the
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price impact ∆t.

Pt = P̃t +∆t

The no impact price is the price that would prevail in the absence of any market impact. An observable

proxy for this is the mid-point of the bid/offer spread. This is the natural price process and we set it to be

a Geometric Brownian Motion.

P̃t = P̃t−1e
Bt

Bt ∼ N
(
µB , σ

2
B

)
≡ IID (Independent Identically Distributed) normal random variable

The price impact ∆t captures the effect of trade size on the transaction price including the portion of the

bid/offer spread. As a percentage of the no-impact price P̃t, it is a linear function of the trade size St and

Xt where as before, Xt is a proxy for private information or market conditions. The parameters θ and γ

measure the sensitivity of price impact to trade size and market conditions or private information.

∆t = (θSt + γXt) P̃t

Xt = ρXt−1 + ηt , ρ ∈ (−1, 1)

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

The optimization problem and Bellman equation can be written as,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]St}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Vt (Pt−1, Xt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}St + Vt+1 (Pt, Xt,Wt+1)]

By starting at the end, (time T ) we have,

VT (PT−1, XT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}ST ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT as,

VT (PT−1, XT−1,WT ) = ET

[
max

{(
P̃T (1 + θWT + γXT )− PT−1

)
, 0
}
WT

]
This involves a normal log-normal mixture and solutions are known for handling this distribution under

32



certain circumstances (Clark 1973; Tauchen & Pitts 1983 ; Yang 2008).

Proposition 6. The value function is of the form, E [Y2|Y2 > 0] where,

Y2 =
(
P̃T−1WT e

BT + θW 2
T P̃T−1e

BT + γρXT−1P̃T−1WT e
BT + γP̃T−1WT e

BT ηT −WTPT−1

)
. This can

be simplified further to,

E
[(
eXY + k

)∣∣ (eXY + k
)
> 0
]

= k + e
(
µX+ 1

2σ
2
X

) Φ
(

µX+σ2
X

σX

)
Φ
(

µX

σX

)

{
µY

[
Φ

(
−
[
k + µY

σY

])
− Φ

(
−µY

σY

)]
− σY√

2π

[
e
− 1

2

(
k+µY
σY

)2

− e
− 1

2

(
µY
σY

)2
]}

+

1− Φ
(

µX+σ2
X

σX

)
1− Φ

(
µX

σX

)

{
µY

[
1− Φ

(
−
[
k + µY

σY

])]
+

σY√
2π

[
e
− 1

2

(
k+µY
σY

)2
]}

Here, X ∼ N
(
µX , σ

2
X

)
;Y ∼ N

(
µY , σ

2
Y

)
;X and Y are independent. Also, k < 0

Proof. See Appendix 11.7.

Clearly, the approach outlined in section 5 to use least squares to approximate the conditional expectation

as a function of the state variables at each stage can be easily applied. We can also use other numerical

techniques (Miranda & Fackler 2002) or approximations to the error function (Chiani, Dardari & Simon

2003).

6.2.2 Complex Formulation

The optimization problem and Bellman equation for the complex case can be written as,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]Wt}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Vt (Pt−1, Xt−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}Wt + Vt+1 (Pt, Xt,Wt+1)]
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By starting at the end, (time T ) we have,

VT (PT−1, XT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}WT ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT can be arrived similar

to the simple formulation in Proposition 6.

6.3 Including Liquidity Constraints

6.3.1 Simple Formulation

A practical limitation that arises when trading is the extent of liquidity that is available at any point in

time. This becomes a restriction on the amount of shares tradable in any given interval. Volume can be

observed and estimated with a reasonable degree of accuracy. Hence, any measure linking volume to trading

costs would be a very practical device. There is a voluminous literature that derives theoretical models

and looks at the empirical relationship between volume and prices. (Karpoff 1986; 1987; Gallant, Rossi &

Tauchen 1992; Campbell, Grossman & Wang 1993; Wang 1994). We fit a specification similar to the one in

(Campbell, Grossman & Wang 1993) wherein the price movements can arise due to changes in future cash

flows and investor preferences or the risk aversion. The intuition for this would be that a low return due

to a price drop could be caused by an increase in the risk aversion or bad news about future cash flows.

Changes in risk aversion cause trading volume to increase while news that is public will already have been

impounded in the price and hence will not cause additional trading. Low returns followed by high volume

are due to increased risk aversion while low returns and low volume are due to public knowledge of a low

level of expectation of future returns. As risk aversion increases, the group of investor still willing to hold the

stock require a greater return leading to higher future expected returns. Bad news about future cash flows

leads to lower expected returns. This is captured as an inverse relation between auto-correlation of returns

and trading volume. The simplification we employ combines the two sources of price changes into one, since

what can be observed is only the price return. We note that this can be viewed as an extension of the law of

price motion with an additional source of uncertainty. Here, Ot is the total volume traded (market volume)

in the interval t. The co-efficient α can be positive or negative, γ is positive and θ continues to be positive.

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]St}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = (α+ 1)Pt−1 + θStPt−1 − γ (Ot − St)Pt−1 + εt, Ot ≥ St, β, θ > 0 , α ∈ (−∞,∞) , E [εt |St, Pt−1 ] = 0
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Ot = ρOt−1 + ηt , ρ ∈ (−1, 1) ≡ AR(1) Process

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vt (Pt−1, Ot−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}St + Vt+1 (Pt, Ot,Wt+1)]

By starting at the end, (time T ) we have,

VT (PT−1, OT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}ST ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT as,

Proposition 7. The value functions are of the form, E [Y |Y > 0] where,

Y =
(
αPT−1WT + βW 2

TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT
)
. For the last and last but one

time periods, these can be simplified further to,

VT (PT−1, OT−1,WT ) =
(√

γ2P 2
T−1σ

2
η + σ2

ε

)
WTψ (ξWT ) , ξWT =

αPT−1 + βWTPT−1 − γρOT−1PT−1√
γ2P 2

T−1σ
2
η + σ2

ε


and

VT−1 (PT−2, OT−2,WT−1) = min
{ST−1}

ET−1

ST−1

(√
γ2P 2

T−2σ
2
η + σ2

ε

)

αPT−2 + βST−1PT−2 − γρOT−2PT−2√

γ2P 2
T−2σ

2
η + σ2

ε

+

φ

(
αPT−2+βST−1PT−2−γρOT−2PT−2√

γ2P 2
T−2σ

2
η+σ2

ε

)

Φ

(
αPT−2+βST−1PT−2−γρOT−2PT−2√

γ2P 2
T−2σ

2
η+σ2

ε

)


+(WT−1 − ST−1)

(√
γ2 {PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}2 σ2

η + σ2
ε

)
{PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}

{
α+ β (WT−1 − ST−1)− γρ2OT−2 − γρηT−1

}√
γ2 {PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}2 σ2

η + σ2
ε



+

φ

(
{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}

{
α+β(WT−1−ST−1)−γρ2OT−2−γρηT−1

}√
γ2{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}2σ2

η+σ2
ε

)

Φ

(
{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}{α+β(WT−1−ST−1)−γρ2OT−2−γρηT−1}√

γ2{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}2σ2
η+σ2

ε

)



Here, β = θ + γ,
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Proof. See Appendix 11.8.

This requires numerical solutions at each stage of the recursion. A point worth noting is that the simple

rule from the earlier linear cases, where the price impact is independent of both the prevailing price and

the size of the unexecuted order, no longer applies here. The necessity of having to work with complicated

expressions of the sort above, highlights to us the inherent difficulty of making predictions in a complex

social system and also that our approach to estimating Market Impact provides a realistic platform upon

which further complications, such as working with joint distributions of volume and price, can be built. A

key takeaway from this result is that volume can have counter intuitive effects on the trading costs.

6.3.2 Complex Formulation

The optimization problem and Bellman equation for the complex case can be written as,

min
{St}

E1

[
T∑

t=1

{max [(Pt − Pt−1) , 0]Wt}

]

T∑
t=1

St = S̄ , St ≥ 0 ,W1 = S̄, WT+1 = 0 , Wt =Wt−1 − St−1

Pt = (α+ 1)Pt−1 + θStPt−1 − γ (Ot − St)Pt−1 + εt, Ot ≥ St, β, θ > 0 , α ∈ (−∞,∞) , E [εt |St, Pt−1 ] = 0

Ot = ρOt−1 + ηt , ρ ∈ (−1, 1) ≡ AR(1) Process

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

Vt (Pt−1, Ot−1,Wt) = min
{St}

Et [max {(Pt − Pt−1) , 0}St + Vt+1 (Pt, Ot,Wt+1)]

By starting at the end, (time T ) we have,

VT (PT−1, OT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}WT ]

Since WT+1 is zero, we have the optimal trade size, S∗
T =WT and an expression for VT can be arrived similar

to the simple formulation in Proposition 7.
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6.4 Trading Costs and Price Spread Sandwich

6.4.1 Simple Formulation

Another useful tool from a trading perspective would be a measure that connects trading costs to the

spread, which can be observed. (Roll 1984; Stoll 1989) connect the stock price changes to the bid-offer

spread. The spread is determined due to order processing costs, adverse information or inventory holdings

costs. The covariance of price changes are related to the covariance of the changes in spread and proportional

to the square of the spread, assuming constant spread. A modification with time varying spread can be easily

accommodated in the specifications above with an additional source of uncertainty or the linear percentage

law of motion. Here, Qt is the spread at any point in time.

Pt = Pt−1 + θSt + γQt + εt , θ > 0 , E [εt |St, Pt−1 ] = 0

Qt = ρQt−1 + ηt , ρ ∈ (−1, 1) ≡ AR(1) Process

εt ∼ N
(
0, σ2

ε

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

ηt ∼ N
(
0, σ2

η

)
≡ Zero Mean IID (Independent Identically Distributed) random shock or white noise

6.4.2 Complex Formulation

This would be analogous to the case in 6.4.1.

7 Conclusions and Possibilities for Future Research

We have developed a trading cost model using dynamic programming that splits the overall price move into

the market impact and timing components. The separation of total trading costs into the two components,

one of which is directly related to the actions of a participant holds numerous lessons for dealing with complex

systems, especially in the social sciences, wherein reducing the complexity by splitting the many sources of

uncertainty can lead to better insights in the decision process.

The above decomposition allows us deduce the zero sum game nature of trading costs. In addition, we

have develop a powerful numerical technique that can be used under any law of motion of prices and with

multiple sources of uncertainty. The starting values we provide for the Rsolnp optimization call can reduce

the number of iterations it requires to find the optimal values. Hence, a good extension can be to find better

starting values for the optimal value at each time period, based on the innovations and the other parameters.

To ensure that model can be used under different situations, we build upon the benchmark case and

introduce more complex formulations of the law of price motion, including a scenario that has multiple

sources of uncertainty and consider liquidity or volume constraints. Relating the trading costs to the spread
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is also easily accomplished. Key improvements to the model and methodology would stem from adding cases

where volume and prices are not assumed to be independent. Distributions of prices that are not normal

and factor the downward skew in prices might also provide more realistic estimates. Our model takes the

prices process as exogenous, interesting continuations can extend the separation of impact and timing to

models of the limit order book that endogenously consider the evolution of prices. Again we stress the better

insights and understanding that results from using simpler models, but the particulars of the securities being

considered might prompt experimenting with some of the more esoteric extensions. We have looked at only

discrete time formulations, extensions to continuous time might show interesting theoretical behavior.

A practical way to use these models, would need to factor in the market timing over the duration of

trading. Hence, we would need to first get an estimate of the market impact for different time intervals and

also calculate the corresponding market timings. Rather than have a single number for the market timing

for each impact estimate, it would be more useful to have an upper bound and lower bound or the maximum

possible range of the market timing, for each particular time duration. It can be shown that the market

timing depends on the price volatility and hence is a key time sensitive variable. Traders can then make a

decision regarding which combination of market impact and timing they prefer, since they have more control

over the market impact, which is their vessel to navigate the turbulent seas, which is the market timing.
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10 Appendix: Figures

Figure 1: Reversion Distributions by Momentum and Volatility Environments - Shorter Horizon
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Figure 2: Reversion Distributions by Momentum and Volatility Environments - Longer Horizon
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Figure 3: Convexity of Distribution Functions

Figure 4: Complex Regression Co-efficients and Optimal Executions
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Figure 5: Complex Optimal Executions for Different Parameters

Figure 6: Mean / Variance / Percentile Comparison of Total Execution Costs
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Figure 7: Histogram of Total Execution Costs
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Figure 8: Complex Executions Costs for Different Parameters
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Figure 9: Simple Regression Co-efficients and Optimal Executions

Figure 10: Simple Optimal Executions for Different Parameters
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Figure 11: Simple Executions Costs for Different Parameters

52



Figure 12: One Step Regression Co-efficients and Optimal Executions

Figure 13: One Step Optimal Executions for Different Parameters
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Figure 14: One Step Executions Costs for Different Parameters
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Figure 15: Actual Trading Cost Distributions

11 Appendix of Proofs

11.1 Proof of Theorem 1

Lemma 1. We first consider the simple formulation, with one interval and two market participants,

Proof. For the buyer we have,

Market Impact = {max [(Pt − Pt−1) , 0]St}
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Market Timing = Implementation Shortfall − Market Impact

= (StPt)− StP0 − {max [(Pt − Pt−1) , 0]St}

Here, we use the definition of Implementation Shortfall after adapting it to the one interval case,

Implementation Shortfall = Paper Return − Real Portfolio Return

=

(
T∑

t=1

StPt

)
− S̄P0 = (StPt)− StP0

Similarly we have for the seller (noting that the drop in prices is detrimental to the intended outcome and

changing the sign accordingly),

Market Impact = {max [(Pt−1 − Pt) , 0]St}

Market Timing = −Implementation Shortfall − Market Impact

StP0 − (StPt)− {max [(Pt−1 − Pt) , 0]St}

If (Pt > Pt−1),

For the buyer,

Market Impact = (Pt − Pt−1)St

Market Timing = (StPt)− StP0 − (Pt − Pt−1)St = (Pt−1 − P0)St

For the seller,

Market Impact = 0

Market Timing = StP0 − (StPt)− 0 = (P0 − Pt)St

Sum of the impact and timing across both the participants,

Total Market Impact = (Pt − Pt−1)St

Total Market Timing = (Pt−1 − P0)St + (P0 − Pt)St = (Pt−1 − Pt)St
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Total Market Impact + Total Market Timing = 0

If (Pt < Pt−1),

For the buyer,

Market Impact = 0

Market Timing = (StPt)− StP0 − 0 = (Pt − P0)St

For the seller,

Market Impact = (Pt−1 − Pt)St

Market Timing = −Implementation Shortfall − Market Impact

StP0 − (StPt)− (Pt−1 − Pt)St = StP0 − StPt−1

Sum of the impact and timing across both the participants,

Total Market Impact = (Pt−1 − Pt)St

Total Market Timing = (P0 − Pt−1)St + (Pt − P0)St = (Pt − Pt−1)St

Total Market Impact + Total Market Timing = 0

It should be clear that this holds for all non-zero positive values of prices and number of shares which

can include zero, that is ∀Pt∈{t=0,1,2,...,T} ∈ (0,∞) and ∀St ∈ [0,∞)

Lemma 2. We next consider the simple formulation, with multiple intervals and multiple participants.

1. We argue that this scenario with multiple intervals and multiple participants can be reduced to an

amalgamation of the above case (Lemma 1) with a single interval and two participants.

2. Our definition of an interval is such that during each interval, only one exchange happens between

buyer and seller for a total of two participants, with the sum of market impact and market timing

being equal to zero.

3. To convince us that such an interval exists, we reason as follows: when multiple exchanges happen
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during an interval, we split the interval into sub-intervals such that only one exchange happens in

each interval. If multiple exchanges happen simultaneously, they can be viewed as one exchange by

combining all the buy trades on one side against the sell trades on the other side.

4. The sum of many such individual intervals also have the same property (by mathematical induction),

wherein the sum of market impact and market timing equals zero, which follows from (Lemma 1). It

should be clear that this holds for all non-zero positive values of prices and number of shares which can

include zero, that is ∀Pt∈{t=0,1,2,...,T} ∈ (0,∞) and ∀St ∈ [0,∞) across all the intervals considered.

Lemma 3. Lastly, we consider the complex formulation with multiple intervals and multiple participants.

1. We argue that the complex formulation scenario with multiple intervals and multiple participants can

be reduced to an amalgamation of the above two cases (Lemma 1, 2).

2. Any shares unexecuted by the end of a certain time interval will need to be executed before the end

of the total time duration available for trading, since we note that by assumption, there will be no

unexecuted shares once the total time duration is completed.

3. We apply Lemma 1 to the sum of impact and timing for the shares executed at the last time interval,

making this sum zero. We then consider the last interval and the interval before that together and

apply Lemma 2 to these two intervals, which gives the sum of impact and timing across both these

intervals as zero.

4. We can then include additional intervals towards the beginning of the trading duration and deduce that

the sum of impact and timing across the new interval and the already aggregated intervals is zero using

mathematical induction. It should be clear that this holds for all non-zero positive values of prices and

number of shares which can include zero, that is ∀Pt∈{t=0,1,2,...,T} ∈ (0,∞) and ∀St ∈ [0,∞) across all

the intervals considered.

5. Hence, by considering the shares executed in the last interval and successively including the intervals

before that, we get that the corresponding sum of market impact and market timing equals zero. The

result is that we have at the end of the total trading duration after aggregating across all the individual

intervals, the sum of total market impact and total market timing being equal to zero. This completest

the proof of Theorem 1.
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11.2 Proof of Proposition 1

Proof. We have from the value function for the last time period.

VT (PT−1,WT ) = ET [max {(θWT + εT ) , 0}WT ]

VT (PT−1,WT ) = ET

[
max

{(
θW 2

T +WT εT
)
, 0
}]

VT (PT−1,WT ) = ET

[(
θW 2

T +WT εT
)∣∣ (θW 2

T +WT εT
)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y |Y > 0] where, Y =
(
θW 2

T +WT εT
)
. We then need to calculate,

ET

[(
θW 2

T +WTσεZ
)∣∣Z >

(
−θWT

σε

)]
, where Z ∼ N (0, 1)

[
∵ Y ∼ N

(
θW 2

T ,W
2
Tσ

2
ε

)
≡ Y ∼ N

(
µ, σ2

)
⇒ Y = µ+ σZ ; Y > 0 ⇒ Z > −µ/σ

]
We have for every standard normal distribution, Z, and for every u, Pr [Z > −u] = Pr [Z < u] = Φ (u).

Here, φ and Φ are the standard normal PDF and CDF, respectively.

E [Z|Z > −u] =
1

Φ (u)

[∫ ∞

−u

tφ (t) dt

]
=

1

Φ (u)

[
−φ (t)|∞−u

]
=
φ (u)

Φ (u)

∵ ∫ tφ (t) dt =

∫
t

1√
2π
e−

1
2 t

2

dt =

∫ 
d− 1√

2π
e−

1
2 t

2

dt

 dt


Hence we have,

E [Y |Y > 0] = µ+ σE
[
Z|Z >

(
−µ
σ

)]
= µ+

σφ (µ/σ)

Φ (µ/σ)

Setting, ψ (u) = u+ φ (u) /Φ(u),

E [Y |Y > 0] = σψ (µ/σ)
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VT (PT−1,WT ) = ET

[(
θW 2

T +WT εT
)∣∣ (θW 2

T +WT εT
)
> 0
]

= WTσε

θWT

σε
+
φ
(

θWT

σε

)
Φ
(

θWT

σε

)
 = σεWTψ (ξWT ) , ξ =

θ

σε

In the next to last period, T − 1, the Bellman equation is,

VT−1 (PT−2,WT−1) = min
{ST−1}

ET−1 [max {(PT−1 − PT−2) , 0}ST−1 + VT (PT−1,WT )]

= min
{ST−1}

ET−1 [max {(θST−1 + εT−1) , 0}ST−1 + VT (PT−2 + θST−1 + εT−1,WT−1 − ST−1)]

= min
{ST−1}

ST−1σε

θST−1

σε
+
φ
(

θST−1

σε

)
Φ
(

θST−1

σε

)
+ (WT−1 − ST−1)σε

θ (WT−1 − ST−1)

σε
+
φ
(

θ(WT−1−ST−1)
σε

)
Φ
(

θ(WT−1−ST−1)
σε

)


= min
{ST−1}

[ST−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}]

We show this to be a convex function with a unique minimum. Let us start with,

G (x) =
φ (x)

Φ (x)
| ∀x > 0

∂G (x)

∂x
=
φ′ (x)

Φ (x)
−
[
φ (x)

Φ (x)

]2
∂G (x)

∂x
= −xφ (x)

Φ (x)
−
[
φ (x)

Φ (x)

]2
[
∵

∂φ (x)

∂ (x)
= −xφ (x) ;

∂Φ(x)

∂ (x)
= φ (x)

]
∂G (x)

∂x
=
φ (x)

Φ (x)

[
−x− φ (x)

Φ (x)

]
< 0 | ∀x > 0

∂2G (x)

∂x2
= − φ (x)

Φ (x)
− x

{
−xφ (x)

Φ (x)
−
[
φ (x)

Φ (x)

]2}
− 2φ (x)φ′ (x)

Φ2 (x)
+

2φ3 (x)

Φ3 (x)

=
−φ (x)Φ2 (x) + x2φ (x)Φ2 (x) + xφ2 (x)Φ (x) + 2xφ2 (x)Φ (x) + 2φ3 (x)

Φ3 (x)

=
φ (x)

{
−Φ2 (x) + x2Φ2 (x) + 3xφ (x)Φ (x) + 2φ2 (x)

}
Φ3 (x)
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Consider the following, ∀x > 0

Let K (x) = 3xφ (x)Φ (x) + 2φ2 (x) +
(
x2 − 1

)
Φ2 (x)

For x ≥ 1,K (x) > 0. Also,

K (0) =
1

π
− 1

4
> 0[

∵ φ (x) =
e−

1
2x

2

√
2π

; φ (0) =
1√
2π

; Φ (x) =
1

2

{
1 + erf

(
x√
2

)}
; Φ (0) =

1

2

]

For x ∈ (0, 1),

K ′ (x) = 3φ (x)Φ (x)− 3x2φ (x)Φ (x) + 3xφ2 (x)− 4xφ2 (x) +
(
x2 − 1

)
2Φ (x)φ (x) + 2xΦ2 (x)

K ′ (x) = x
{
2Φ2 (x)− φ2 (x)

}
+
{
1− x2

}
φ (x)Φ (x) ≥ xL (x)

where, L (x) =
{
2Φ2 (x)− φ2 (x)

}
. Further, Φ(x) ≥ 1

2 and φ2 (x) ≤ 1
2π ⇒ L (x) ≥ 1

2 − 1
2π > 0. K ′ (x) >

0 ⇒ K (x) is increasing. Hence, K (x) > K (0) > 0 | ∀u ∈ (0, 1) . This gives, K (x) > 0 and ∂2G(x)
∂x2 >

0 | ∀x ∈ (0,∞) . It is worth noting the following asymptotic properties

[
∵ lim

x→0+

∂2G (x)

∂x2
> 0 ; lim

x→∞

∂2G (x)

∂x2
= 0 ;

∂G (x)

∂x
< 0 | ∀x > 0

]

Next we show that f (a− x) is convex, given f ′′ (x) > 0 ; x > 0

Let y = a− x

∂f (y)

∂x
=

∂f (y)

∂y

∂ (a− x)

∂x
; a > x

= (−1) f ′ (y)

∂2f (y)

∂x2
= (−1)

∂f ′ (y)

∂y

∂ (a− x)

∂x

= f ′′ (y)

> 0 [∵ f ′′ (y) > 0 | ∀y > 0 ]

We can similarly show that f (bx) is convex if f (x) is convex (in our case, b > 0, but the result holds ∀b).
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Next we derive conditions when x2 + xf (x) is convex, given f ′′ (x) > 0 ; x > 0

Let g (x) = x2 + xf (x)

g′ (x) = 2x+ xf ′ (x) + f (x)

g′′ (x) = 2 + xf ′′ (x) + 2f ′ (x)

g′′ (x) > 0 if f ′ (x) > 0 or if 2 + xf ′′ (x) > |2f ′ (x)|

Finally,

Let Q (x) = x2 + x
φ (x)

Φ (x)

∂Q (x)

∂x
= 2x+ x

[
−xφ (x)

Φ (x)
−
{
φ (x)

Φ (x)

}2
]
+
φ (x)

Φ (x)

∂Q (x)

∂x

∣∣∣∣
x=0

=
φ (0)

Φ (0)
> 0

∂2Q (x)

∂x2
= 2 + xφ (x)

[
−Φ2 (x) + x2Φ2 (x) + 3xφ (x)Φ (x) + 2φ2 (x)

Φ3 (x)

]
+ 2

[
−x φ (x)

Φ (x)
−
{
φ (x)

Φ (x)

}2
]

= 2 + φ (x)

[
x3Φ2 (x) + 3x2φ (x)Φ (x) + 2xφ2 (x)− 3xΦ2 (x)− 2φ (x)Φ (x)

Φ3 (x)

]

=

[
2Φ3 (x) + x3Φ2 (x)φ (x) + 3x2φ2 (x)Φ (x) + 2xφ3 (x)− 3xΦ2 (x)φ (x)− 2φ2 (x)Φ (x)

Φ3 (x)

]

Let, K (x) = 2Φ3 (x) + 2xφ3 (x) + x3Φ2 (x)φ (x) + 3x2φ2 (x)Φ (x)− 3xΦ2 (x)φ (x)− 2φ2 (x)Φ (x)

We need to show that K (x) > 0 |∀x > 0 . First we note that,

K (0) =
1

4
− 1

2π
> 0

We can write this as,

K (x) = 2xφ3 (x) + x3Φ2 (x)φ (x) + 3x2φ2 (x)Φ (x) + Φ (x)
[
2Φ2 (x)− 3xΦ(x)φ (x)− 2φ2 (x)

]
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We then need to show,

L (x) =
[
2Φ2 (x)− 3xΦ(x)φ (x)− 2φ2 (x)

]
> 0 |∀x > 0

L (0) =
[
2Φ2 (0)− 2φ2 (0)

]
=

1

2
− 1

π
> 0

∂L (x)

∂x
= 4Φ (x)φ (x)− 3Φ (x)φ (x)− 3xφ2 (x) + 3x2Φ(x)φ (x) + 4xφ2 (x)

= Φ (x)φ (x) + 3x2Φ(x)φ (x) + xφ2 (x) > 0 |∀x ≥ 0

Therefore L(x) is an increasing function on the interval [0,∞). Its minimum must be at L(0) > 0, proving

L(x) > 0 and ∂2Q(x)
∂x2 > 0 | ∀x ∈ (0,∞) . It is worth noting the following asymptotic properties and the

graphical results shown in the main text,

[
∵ lim

x→0+

∂2Q (x)

∂x2
> 0 ; lim

x→∞

∂2Q (x)

∂x2
> 0 ;

∂Q (x)

∂x
> 0 | ∀x > 0

]

11.3 Proof of Proposition 2

Proof. Consider,

VT−1 (PT−2,WT−1) = min
{ST−1}

[ST−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}]

Here, ψ (u) = u+ φ (u) /Φ(u) , ξ =
θ

σε
,

First Order Conditions (FOC) give,

∂

∂ST−1
[ST−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}] = 0

ξST−1ψ
′ (ξST−1) + ψ (ξST−1)− ξ (WT−1 − ST−1)ψ

′ (ξ {WT−1 − ST−1})− ψ (ξ {WT−1 − ST−1}) = 0

ξ2ST−1

{
1− ξST−1φ (ξST−1)

Φ (ξST−1)
−
[
φ (ξST−1)

Φ (ξST−1)

]2}
+

{
ξST−1 +

φ (ξST−1)

Φ (ξST−1)

}

+ξ2 (WT−1 − ST−1)

{
−1 +

ξ (WT−1 − ST−1)φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

+

[
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

]2}

−
{
ξ {WT−1 − ST−1}+

φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

}
= 0
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[
∵ ψ′ (u) = 1− uφ (u)

Φ (u)
−
[
φ (u)

Φ (u)

]2
and ψ (u) = u+

φ (u)

Φ (u)

]

ST−1 +
1

ξ
ST−1 +

1

ξ2
φ (ξST−1)

Φ (ξST−1)
+
ξ (WT−1 − ST−1)

2
φ (ξ {WT−1 − ST−1})

Φ (ξ {WT−1 − ST−1})

+ (WT−1 − ST−1)

[
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

]2
=

(WT−1 − ST−1) +
1

ξ
{WT−1 − ST−1}+

1

ξ2
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

+
ξS2

T−1φ (ξST−1)

Φ (ξST−1)
+ ST−1

[
φ (ξST−1)

Φ (ξST−1)

]2

Setting ST−1 =WT−1/2 gives RHS = LHS. We have,

VT−1 (PT−2,WT−1) = ST−1σε

θST−1

σε
+
φ
(

θST−1

σε

)
Φ
(

θST−1

σε

)


+(WT−1 − ST−1)σε

θ (WT−1 − ST−1)

σε
+
φ
(

θ(WT−1−ST−1)
σε

)
Φ
(

θ(WT−1−ST−1)
σε

)


VT−1 (PT−2,WT−1) =WT−1σε

θWT−1

2σε
+
φ
(

θWT−1

2σε

)
Φ
(

θWT−1

2σε

)


Absent closed form solutions, numerical techniques using ξ1 > 0 can be tried. We can also set ST−1 ≈

ω1 (WT−1) using a well behaved (continuous and differentiable) function, ω1. But the former approach is

simpler and lends itself easily to numerical solutions that we will attempt in the more complex laws of motion

to follow.

ST−1 ≈ ξ1WT−1

or with additional terms including non-linear regressions as,

ST−1 ≈ ξ0 + ξ1WT−1 + ξ2 (WT−1)
2 OR ST−1 ≈ ξ0 (WT−1)

ξ1

VT−1 (PT−2,WT−1) = [σεξ1WT−1ψ (ξξ1WT−1) + {WT−1 − ξ1WT−1}σεψ {ξ (WT−1 − ξ1WT−1)}]

= σεWT−1 [ξ1ψ (ξξ1WT−1) + (1− ξ1)ψ {ξWT−1 (1− ξ1)}]

= ψ1 (WT−1) , here, ψ1 is a convex function.
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Continuing the recursion,

VT−2 (PT−3,WT−2) = min
{ST−2}

ET−2 [max {(PT−2 − PT−3) , 0}ST−2 + VT−1 (PT−2,WT−1)]

= min
{ST−2}

ET−2 [max {(θST−2 + εT−2) , 0}ST−2 + VT−1 (PT−3 + θST−2 + εT−3,WT−2 − ST−2)]

= min
{ST−2}

ST−2σε

θST−2

σε
+
φ
(

θST−2

σε

)
Φ
(

θST−2

σε

)
+ (WT−2 − ST−2)σε

θ (WT−2 − ST−2)

2σε
+
φ
[
θ(WT−2−ST−2)

2σε

]
Φ
[
θ(WT−2−ST−2)

2σε

]



First Order Conditions (FOC) give,

3θST−2 − θWT−2 +
σεφ

(
θST−2

σε

)
Φ
(

θST−2

σε

) −
θ2S2

T−2φ
(

θST−2

σε

)
σεΦ

(
θST−2

σε

) − θST−2

 φ
(

θST−2

σε

)
Φ
(

θST−2

σε

)
2

−
σεφ

[
θ(WT−2−ST−2)

2σε

]
Φ
[
θ(WT−2−ST−2)

2σε

] +
θ2 (WT−2 − ST−2)

2

4σε

φ
[
θ(WT−2−ST−2)

2σε

]
Φ
[
θ(WT−2−ST−2)

2σε

] + θ (WT−2 − ST−2)

2

 φ
[
θ(WT−2−ST−2)

2σε

]
Φ
[
θ(WT−2−ST−2)

2σε

]


2

= 0

This gives, ST−2 =WT−2/3 and the corresponding value function as,

VT−2 (PT−3,WT−2) =
WT−2

3
σε

 θ

σε

WT−2

3
+
φ
(

θ
σε

WT−2

3

)
Φ
(

θ
σε

WT−2

3

)
+

(
2WT−2

3

)
σε

 θ

2σε

2WT−2

3
+
φ
[

θ
2σε

2WT−2

3

]
Φ
[

θ
2σε

2WT−2

3

]


VT−2 (PT−3,WT−2) = σεWT−2

θWT−2

3σε
+
φ
(

θWT−2

3σε

)
Φ
(

θWT−2

3σε

)


We show the general case using induction. Let the value function hold for T −K

VT−K (PT−K−1,WT−K) = σεWT−K

 θWT−K

(K + 1)σε
+
φ
(

θWT−K

(K+1)σε

)
Φ
(

θWT−K

(K+1)σε

)


Continuing the recursion,

VT−K−1 (PT−K−2,WT−K−1) = min
{ST−K−1}

ET−K−1 [max {(PT−K−1 − PT−K−2) , 0}ST−K−1

+ VT−K (PT−K−1,WT−K)]

= min
{ST−K−1}

ET−K−1 [max {(θST−K−1 + εT−K−1) , 0}ST−K−1

+ VT−K (PT−K−2 + θST−K−1 + εT−K−2,WT−K−1 − ST−K−1)]
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= min
{ST−K−1}

ST−K−1σε

θST−K−1

σε
+
φ
(

θST−K−1

σε

)
Φ
(

θST−K−1

σε

)


+ (WT−K−1 − ST−K−1)σε

θ (WT−K−1 − ST−K−1)

(K + 1)σε
+
φ
[
θ(WT−K−1−ST−K−1)

(K+1)σε

]
Φ
[
θ(WT−K−1−ST−K−1)

(K+1)σε

]



= min
{ST−K−1}

[
ST−K−1

{
ξST−K−1 +

φ (ξST−K−1)

Φ (ξST−K−1)

}

+ (WT−K−1 − ST−K−1)

ξ (WT−K−1 − ST−K−1)

(K + 1)
+
φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]



First Order Conditions (FOC) give,

{
ξST−K−1 +

φ (ξST−K−1)

Φ (ξST−K−1)

}
+ST−K−1

{
ξ − ξ2ST−K−1

φ (ξST−K−1)

Φ (ξST−K−1)
− ξ

[
φ (ξST−K−1)

Φ (ξST−K−1)

]2}

−

ξ (WT−K−1 − ST−K−1)

(K + 1)
+
φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]


+(WT−K−1 − ST−K−1)

− ξ

(K + 1)
+
ξ2 (WT−K−1 − ST−K−1)

(K + 1)
2

φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
+

ξ

(K + 1)

 φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
2
 = 0

2ξST−K−1 +
φ (ξST−K−1)

Φ (ξST−K−1)
+
ξ2 (WT−K−1 − ST−K−1)

2

(K + 1)
2

φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
+
ξ (WT−K−1 − ST−K−1)

(K + 1)

 φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
2

=

ξ2S2
T−K−1

φ (ξST−K−1)

Φ (ξST−K−1)
+ ξST−K−1

[
φ (ξST−K−1)

Φ (ξST−K−1)

]2

+
2ξ (WT−K−1 − ST−K−1)

(K + 1)
+
φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
Φ
[
ξ(WT−K−1−ST−K−1)

(K+1)

]
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This gives, ST−K−1 =WT−K−1/ (K + 2) and the corresponding value function is,

VT−K−1 (PT−K−2,WT−K−1) =
WT−K−1

(K + 2)
σε

 θ

σε

WT−K−1

(K + 2)
+
φ
(

θ
σε

WT−K−1

(K+2)

)
Φ
(

θ
σε

WT−K−1

(K+2)

)


+

(
WT−K−1 −

WT−K−1

(K + 2)

)
σε

{
θ

(K + 1)σε

(
WT−K−1 −

WT−K−1

(K + 2)

)

+
φ
[

θ
(K+1)σε

(
WT−K−1 − WT−K−1

(K+2)

)]
Φ
[

θ
(K+1)σε

(
WT−K−1 − WT−K−1

(K+2)

)]


VT−K−1 (PT−K−2,WT−K−1) = σεWT−K−1

 θ

σε

WT−K−1

(K + 2)
+
φ
(

θ
σε

WT−K−1

(K+2)

)
Φ
(

θ
σε

WT−K−1

(K+2)

)


This completes the induction.

11.4 Proof of Proposition 3

Proof. Consider,

VT (PT−1,WT ) = ET [max {(θWT + εT ) , 0}WT ]

VT (PT−1,WT ) = ET

[
max

{(
θW 2

T +WT εT
)
, 0
}]

VT (PT−1,WT ) = ET

[(
θW 2

T +WT εT
)∣∣ (θW 2

T +WT εT
)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y |Y > 0] where, Y =
(
θW 2

T +WT εT
)
. We then need to calculate,

ET

[(
θW 2

T +WTσεZ
)∣∣Z >

(
−θWT

σε

)]
, where Z ∼ N (0, 1)

[
∵ Y ∼ N

(
θW 2

T ,W
2
Tσ

2
ε

)
≡ Y ∼ N

(
µ, σ2

)
⇒ Y = µ+ σZ ; Y > 0 ⇒ Z > −µ/σ

]
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We have for every standard normal distribution, Z, and for every u, Pr [Z > −u] = Pr [Z < u] = Φ (u).

Here, φ and Φ are the standard normal PDF and CDF, respectively.

E [Z|Z > −u] =
1

Φ (u)

[∫ ∞

−u

tφ (t) dt

]
=

1

Φ (u)

[
−φ (t)|∞−u

]
=
φ (u)

Φ (u)

Hence we have,

E [Y |Y > 0] = µ+ σE
[
Z|Z >

(
−µ
σ

)]
= µ+

σφ (µ/σ)

Φ (µ/σ)

Setting, ψ (u) = u+ φ (u) /Φ(u),

E [Y |Y > 0] = σψ (µ/σ)

VT (PT−1,WT ) = ET

[(
θW 2

T +WT εT
)∣∣ (θW 2

T +WT εT
)
> 0
]

= WTσε

θWT

σε
+
φ
(

θWT

σε

)
Φ
(

θWT

σε

)
 = σεWTψ (ξWT ) , ξ =

θ

σε

In the next to last period, T − 1, the Bellman equation is,

VT−1 (PT−2,WT−1) = min
{ST−1}

ET−1 [max {(PT−1 − PT−2) , 0}WT−1 + VT (PT−1,WT )]

= min
{ST−1}

ET−1 [max {(θST−1 + εT−1) , 0}WT−1 + VT (PT−2 + θST−1 + εT−1,WT−1 − ST−1)]

= min
{ST−1}

WT−1σε

θST−1

σε
+
φ
(

θST−1

σε

)
Φ
(

θST−1

σε

)
+ (WT−1 − ST−1)σε

θ (WT−1 − ST−1)

σε
+
φ
(

θ(WT−1−ST−1)
σε

)
Φ
(

θ(WT−1−ST−1)
σε

)


VT−1 (PT−2,WT−1) = min
{ST−1}

[WT−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}]

Here, ψ (u) = u+ φ (u) /Φ(u) ; ξ =
θ

σε
; Note that, WT−1 = ST−1 +WT

We can show the above expression to be a convex function with a unique minimum, since it is the sum of

the portion shown to be convex earlier (Proposition 1, Appendix 11.2), another convex function and a linear

component.
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First Order Conditions (FOC) give,

∂

∂ST−1
[WT−1σεψ (ξST−1) + (WT−1 − ST−1)σεψ {ξ (WT−1 − ST−1)}] = 0

ξWT−1ψ
′ (ξST−1)− ξ (WT−1 − ST−1)ψ

′ (ξ {WT−1 − ST−1})− ψ (ξ {WT−1 − ST−1}) = 0

(ξWT−1)

{
1− ξST−1φ (ξST−1)

Φ (ξST−1)
−
[
φ (ξST−1)

Φ (ξST−1)

]2}

−ξ (WT−1 − ST−1)

{
1− ξ (WT−1 − ST−1)φ (ξ {WT−1 − ST−1})

Φ (ξ {WT−1 − ST−1})
−
[
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

]2}

−
{
ξ {WT−1 − ST−1}+

φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

}
= 0

[
∵ ψ′ (u) = 1− uφ (u)

Φ (u)
−
[
φ (u)

Φ (u)

]2
and ψ (u) = u+

φ (u)

Φ (u)

]

WT−1 +
ξ (WT−1 − ST−1)

2
φ (ξ {WT−1 − ST−1})

Φ (ξ {WT−1 − ST−1})
+ (WT−1 − ST−1)

[
φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

]2
=

(WT−1 − ST−1) + {WT−1 − ST−1}+
1

ξ

φ (ξ {WT−1 − ST−1})
Φ (ξ {WT−1 − ST−1})

+
ξWT−1ST−1φ (ξST−1)

Φ (ξST−1)
+WT−1

[
φ (ξST−1)

Φ (ξST−1)

]2

11.5 Proof of Proposition 4

Proof. Consider,

VT (PT−1, XT−1,WT ) = ET [max {(θWT + εT + γXT ) , 0}WT ]

VT (PT−1, XT−1,WT ) = ET

[
max

{(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
, 0
}]

= ET

[(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)∣∣ (θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y |Y > 0] where, Y =
(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
. We then need to

calculate,

ET

{θW 2
T + γρWTXT−1 +WT

(√
γ2σ2

η + σ2
ε

)
Z
}∣∣∣Z >

−θWT + γρXT−1√
γ2σ2

η + σ2
ε

 , where Z ∼ N (0, 1)
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[
∵ X ∼ N(µX , σ

2
X) ; Y ∼ N(µY , σ

2
Y ) ; U = X + Y ⇒ U ∼ N(µX + µY , σ

2
X + σ2

Y )
]

[
∵ Y ∼ N

(
θW 2

T + γρWTXT−1,W
2
T

{
γ2σ2

η + σ2
ε

})
≡ Y ∼ N

(
µ, σ2

)
⇒ Y = µ+ σZ ; Y > 0 ⇒ Z > −µ/σ

]
We have for every standard normal distribution, Z, and for every u, Pr [Z > −u] = Pr [Z < u] = Φ (u).

Here, φ and Φ are the standard normal PDF and CDF, respectively.

E [Z|Z > −u] =
1

Φ (u)

[∫ ∞

−u

tφ (t) dt

]
=

1

Φ (u)

[
−φ (t)|∞−u

]
=
φ (u)

Φ (u)

Hence we have,

E [Y |Y > 0] = µ+ σE
[
Z|Z >

(
−µ
σ

)]
= µ+

σφ (µ/σ)

Φ (µ/σ)

Setting, ψ (u) = u+ φ (u) /Φ(u),

E [Y |Y > 0] = σψ (µ/σ)

VT (PT−1, XT−1,WT ) = ET

[(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)∣∣ (θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
> 0
]

=WT

(√
γ2σ2

η + σ2
ε

)
θWT + γρXT−1√

γ2σ2
η + σ2

ε

+

φ

(
θWT+γρXT−1√

γ2σ2
η+σ2

ε

)

Φ

(
θWT+γρXT−1√

γ2σ2
η+σ2

ε

)


=
(√

γ2σ2
η + σ2

ε

)
WTψ (ξWT ) , ξWT =

θWT + γρXT−1√
γ2σ2

η + σ2
ε

In the next to last period, T − 1, the Bellman equation is,

VT−1 (PT−2, XT−2,WT−1) = min
{ST−1}

ET−1 [max {(PT−1 − PT−2) , 0}ST−1 + VT (PT−1, XT−1,WT )]

= min
{ST−1}

ET−1

[
max

{(
θS2

T−1 + ST−1εT−1 + γρST−1XT−2 + γST−1ηT−1

)
, 0
}

+ VT (PT−2 + θST−1 + εT−1 + γρXT−2 + γηT−1, ρXT−2 + ηT−1,WT−1 − ST−1)]
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= min
{ST−1}

ST−1

(√
γ2σ2

η + σ2
ε

)
θST−1 + γρXT−2√

γ2σ2
η + σ2

ε

+

φ

(
θST−1+γρXT−2√

γ2σ2
η+σ2

ε

)

Φ

(
θST−1+γρXT−2√

γ2σ2
η+σ2

ε

)


+ {WT−1 − ST−1}
(√

γ2σ2
η + σ2

ε

)
θ (WT−1 − ST−1) + γρXT−2√

γ2σ2
η + σ2

ε

+

φ

(
θ(WT−1−ST−1)+γρXT−2√

γ2σ2
η+σ2

ε

)

Φ

(
θ(WT−1−ST−1)+γρXT−2√

γ2σ2
η+σ2

ε

)



= min
{ST−1}

[
ST−1

(√
γ2σ2

η + σ2
ε

)
ψ (ξ1ST−1) + (WT−1 − ST−1)

(√
γ2σ2

η + σ2
ε

)
ψ {ξ1 (WT−1 − ST−1)}

]
Here, ξ1ST−1 =

θST−1 + γρXT−2√
γ2σ2

η + σ2
ε

Also, let α1 = γρXT−2, β =
√
γ2σ2

η + σ2
ε

= min
{ST−1}


θS2

T−1 + α1ST−1 + βST−1

φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

)


+

θ (WT−1 − ST−1)
2
+ α1 (WT−1 − ST−1) + β (WT−1 − ST−1)

φ
(

θ(WT−1−ST−1)+α1

β

)
Φ
(

θ(WT−1−ST−1)+α1

β

)


This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

2θST−1 + α1 + β


φ
(

θST−1+α1

β

)
Φ
(

θST−1+α1

β

) +
θST−1

β

−
(

θST−1+α1

β

)
φ
(

θST−1+α1

β

)
Φ
(

θST−1+α1

β

) −

 φ
(

θST−1+α1

β

)
Φ
(

θST−1+α1

β

)


2



−2θ (WT−1 − ST−1)− α1 + β

−
φ
(

θ(WT−1−ST−1)+α1

β

)
Φ
(

θ(WT−1−ST−1)+α1

β

)
+
θ (WT−1 − ST−1)

β


(

θ(WT−1−ST−1)+α1

β

)
φ
(

θ(WT−1−ST−1)+α1

β

)
Φ
(

θ(WT−1−ST−1)+α1

β

) +

 φ
(

θ(WT−1−ST−1)+α1

β

)
Φ
(

θ(WT−1−ST−1)+α1

β

)


2

 = 0

ST−1 =WT−1/2 solves this, giving the value function,

VT−1 (PT−2, XT−2,WT−1) =
θ

2
W 2

T−1 + α1WT−1 + βWT−1

φ
(

θWT−1+2α1

2β

)
Φ
(

θWT−1+2α1

2β

)
Continuing the recursion,

VT−2 (PT−3, XT−3,WT−2) = min
{ST−2}

ET−2 [max {(PT−2 − PT−3) , 0}ST−2 + VT−1 (PT−2, XT−2,WT−1)]
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= min
{ST−2}

ET−2

[
max

{(
θS2

T−2 + ST−2εT−2 + γρST−2XT−3 + γST−2ηT−2

)
, 0
}

+ VT−1 (PT−3 + θST−2 + εT−2 + γρXT−3 + γηT−2, ρXT−3 + ηT−2,WT−2 − ST−2)]

= min
{ST−2}

ST−2

(√
γ2σ2

η + σ2
ε

)
θST−2 + γρXT−3√

γ2σ2
η + σ2

ε

+

φ

(
θST−2+γρXT−3√

γ2σ2
η+σ2

ε

)

Φ

(
θST−2+γρXT−3√

γ2σ2
η+σ2

ε

)


+ {WT−2 − ST−2}
(√

γ2σ2
η + σ2

ε

)
θ {WT−2 − ST−2}+ 2γρXT−3

2
√
γ2σ2

η + σ2
ε

+

φ

(
θ{WT−2−ST−2}+2γρXT−3

2
√

γ2σ2
η+σ2

ε

)

Φ

(
θ{WT−2−ST−2}+2γρXT−3

2
√

γ2σ2
η+σ2

ε

)



= min
{ST−2}

[
ST−2

(√
γ2σ2

η + σ2
ε

)
ψ (ξ2ST−2) + (WT−2 − ST−2)

(√
γ2σ2

η + σ2
ε

)
ψ {ξ2 (WT−2 − ST−2)}

]
Here, ξ2ST−2 =

θST−2 + 2γρXT−3

2
√
γ2σ2

η + σ2
ε

Also, let α2 = γρXT−3, β =
√
γ2σ2

η + σ2
ε

= min
{ST−2}


θS2

T−2 + α2ST−2 + βST−2

φ
(

θST−2+α2

β

)
Φ
(

θST−2+α2

β

)


+

θ
2
(WT−2 − ST−2)

2
+ α2 (WT−2 − ST−2) + β (WT−2 − ST−2)

φ
(

θ(WT−2−ST−2)+2α2

2β

)
Φ
(

θ(WT−2−ST−2)+2α2

2β

)


This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

2θST−2 + α2 + β


φ
(

θST−2+α2

β

)
Φ
(

θST−2+α2

β

) +
θST−2

β

−
(

θST−2+α2

β

)
φ
(

θST−2+α2

β

)
Φ
(

θST−2+α2

β

) −

 φ
(

θST−2+α2

β

)
Φ
(

θST−2+α2

β

)


2



−θ (WT−2 − ST−2)− α2 + β

−
φ
(

θ(WT−2−ST−2)+2α2

2β

)
Φ
(

θ(WT−2−ST−2)+2α
2β

)
+
θ (WT−2 − ST−2)

2β


(

θ(WT−2−ST−2)+2α2

2β

)
φ
(

θ(WT−2−ST−2)+2α2

2β

)
Φ
(

θ(WT−2−ST−2)+2α2

2β

) +

 φ
(

θ(WT−2−ST−2)+2α2

2β

)
Φ
(

θ(WT−2−ST−2)+2α2

2β

)


2

 = 0

ST−1 =WT−1/3 solves this, giving the value function,

VT−2 (PT−3, XT−3,WT−2) =
θ

3
W 2

T−2 + α2WT−2 + βWT−2

φ
(

θWT−2+3α2

3β

)
Φ
(

θWT−2+3α2

3β

)
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We show the general case using induction. Let the value function hold for T −K

VT−K (PT−K−1, XT−K−1,WT−K) =
θ

(K + 1)
W 2

T−K + αKWT−K + βWT−K

φ
(

θWT−K+(K+1)αK

(K+1)β

)
Φ
(

θWT−K+(K+1)αK

(K+1)β

)

VT−K−1 (PT−K−2, XT−K−2,WT−K−1) = min
{ST−K−1}

ET−K−1 [max {(PT−K−1 − PT−K−2) , 0}ST−K−1

+VT−K (PT−K−1, XT−K−1,WT−K)]

= min
{ST−K−1}

ET−K−1

[
max

{(
θS2

T−K−1 + ST−K−1εT−K−1 + γρST−K−1XT−K−2 + γST−K−1ηT−K−1

)
, 0
}

+VT−K (PT−K−2 + θST−K−1 + εT−K−1 + γρXT−K−2 + γηT−K−1, ρXT−K−2 + ηT−K−1,WT−K−1 − ST−K−1)]

= min
{ST−K−1}

ST−K−1

(√
γ2σ2

η + σ2
ε

)
θST−K−1 + γρXT−K−2√

γ2σ2
η + σ2

ε

+

φ

(
θST−K−1+γρXT−K−2√

γ2σ2
η+σ2

ε

)

Φ

(
θST−K−1+γρXT−K−2√

γ2σ2
η+σ2

ε

)


+ {WT−K−1 − ST−K−1}
(√

γ2σ2
η + σ2

ε

)
θ {WT−K−1 − ST−K−1}+ (K + 1) γρXT−3

(K + 1)
√
γ2σ2

η + σ2
ε

+

φ

(
θ{WT−K−1−ST−K−1}+(K+1)γρXT−K−2

(K+1)
√

γ2σ2
η+σ2

ε

)

Φ

(
θ{WT−K−1−ST−K−1}+(K+1)γρXT−K−2

(K+1)
√

γ2σ2
η+σ2

ε

)



= min
{ST−K−1}

[
ST−K−1

(√
γ2σ2

η + σ2
ε

)
ψ (ξK+1ST−K−1)

+ (WT−K−1 − ST−K−1)
(√

γ2σ2
η + σ2

ε

)
ψ {ξK+1 (WT−K−1 − ST−K−1)}

]

Here, ξK+1ST−K−1 =
θST−K−1 + 2γρXT−K−2

2
√
γ2σ2

η + σ2
ε

Also, let αK+1 = γρXT−K−2, β =
√
γ2σ2

η + σ2
ε
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= min
{ST−K−1}


θS2

T−K−1 + αK+1ST−K−1 + βST−K−1

φ
(

θST−K−1+αK+1

β

)
Φ
(

θST−K−1+αK+1

β

)


+

[
θ

(K + 1)
(WT−K−1 − ST−K−1)

2
+ αK+1 (WT−K−1 − ST−K−1)

]

+

β (WT−K−1 − ST−K−1)
φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
Φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)


This is a convex function and numerical solutions can be obtained at each stage of the recursion or taking

First Order Conditions give,

2θST−K−1 + αK+1 + β

 φ
(

θST−K−1+αK+1

β

)
Φ
(

θST−K−1+αK+1

β

)
+
θST−K−1

β

−
(

θST−K−1+αK+1

β

)
φ
(

θST−K−1+αK+1

β

)
Φ
(

θST−K−1+αK+1

β

) −

 φ
(

θST−K−1+αK+1

β

)
Φ
(

θST−K−1+αK+1

β

)


2



− 2θ

(K + 1)
(WT−K−1 − ST−K−1)− αK+1 + β

−
φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
Φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
+
θ (WT−K−1 − ST−K−1)

(K + 1)β


(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
Φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
+

 φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)
Φ
(

θ(WT−K−1−ST−K−1)+(K+1)αK+1

(K+1)β

)


2

 = 0

ST−K−1 =WT−K−1/ (K + 2) solves this, giving the value function and completing the induction.

VT−K−1 (PT−K−2, XT−K−2,WT−K−1) =
θ

(K + 2)
W 2

T−K−1 + αK+1WT−K−1 + βWT−K−1

φ
(

θWT−K−1+(K+2)αK+1

(K+2)β

)
Φ
(

θWT−K−1+(K+2)αK+1

(K+2)β

)

11.6 Proof of Proposition 5

Proof. Consider,

VT (PT−1, XT−1,WT ) = ET [max {(θWT + εT + γXT ) , 0}WT ]

VT (PT−1, XT−1,WT ) = ET

[
max

{(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
, 0
}]
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= ET

[(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)∣∣ (θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y |Y > 0] where, Y =
(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
. We then need to

calculate,

ET

{θW 2
T + γρWTXT−1 +WT

(√
γ2σ2

η + σ2
ε

)
Z
}∣∣∣Z >

−θWT + γρXT−1√
γ2σ2

η + σ2
ε

 , where Z ∼ N (0, 1)

[
∵ X ∼ N(µX , σ

2
X) ; Y ∼ N(µY , σ

2
Y ) ; U = X + Y ⇒ U ∼ N(µX + µY , σ

2
X + σ2

Y )
]

[
∵ Y ∼ N

(
θW 2

T + γρWTXT−1,W
2
T

{
γ2σ2

η + σ2
ε

})
≡ Y ∼ N

(
µ, σ2

)
⇒ Y = µ+ σZ ; Y > 0 ⇒ Z > −µ/σ

]
We have for every standard normal distribution, Z, and for every u, Pr [Z > −u] = Pr [Z < u] = Φ (u).

Here, φ and Φ are the standard normal PDF and CDF, respectively.

E [Z|Z > −u] =
1

Φ (u)

[∫ ∞

−u

tφ (t) dt

]
=

1

Φ (u)

[
−φ (t)|∞−u

]
=
φ (u)

Φ (u)

Hence we have,

E [Y |Y > 0] = µ+ σE
[
Z|Z >

(
−µ
σ

)]
= µ+

σφ (µ/σ)

Φ (µ/σ)

Setting, ψ (u) = u+ φ (u) /Φ(u),

E [Y |Y > 0] = σψ (µ/σ)

VT (PT−1, XT−1,WT ) = ET

[(
θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)∣∣ (θW 2

T +WT εT + γρWTXT−1 + γWT ηT
)
> 0
]

=WT

(√
γ2σ2

η + σ2
ε

)
θWT + γρXT−1√

γ2σ2
η + σ2

ε

+

φ

(
θWT+γρXT−1√

γ2σ2
η+σ2

ε

)

Φ

(
θWT+γρXT−1√

γ2σ2
η+σ2

ε

)


=
(√

γ2σ2
η + σ2

ε

)
WTψ (ξWT ) , ξWT =

θWT + γρXT−1√
γ2σ2

η + σ2
ε
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In the next to last period, T − 1, the Bellman equation is,

VT−1 (PT−2, XT−2,WT−1) = min
{ST−1}

ET−1 [max {(PT−1 − PT−2) , 0}WT−1 + VT (PT−1, XT−1,WT )]

= min
{ST−1}

ET−1 [max {(θWT−1ST−1 +WT−1εT−1 + γρWT−1XT−2 + γWT−1ηT−1) , 0}

+ VT (PT−2 + θST−1 + εT−1 + γρXT−2 + γηT−1, ρXT−2 + ηT−1,WT−1 − ST−1)]

= min
{ST−1}

WT−1

(√
γ2σ2

η + σ2
ε

)
θST−1 + γρXT−2√

γ2σ2
η + σ2

ε

+

φ

(
θST−1+γρXT−2√

γ2σ2
η+σ2

ε

)

Φ

(
θST−1+γρXT−2√

γ2σ2
η+σ2

ε

)


+ {WT−1 − ST−1}
(√

γ2σ2
η + σ2

ε

)
θ (WT−1 − ST−1) + γρXT−2√

γ2σ2
η + σ2

ε

+

φ

(
θ(WT−1−ST−1)+γρXT−2√

γ2σ2
η+σ2

ε

)

Φ

(
θ(WT−1−ST−1)+γρXT−2√

γ2σ2
η+σ2

ε

)



= min
{ST−1}

[
WT−1

(√
γ2σ2

η + σ2
ε

)
ψ (ξ1ST−1) + (WT−1 − ST−1)

(√
γ2σ2

η + σ2
ε

)
ψ {ξ1 (WT−1 − ST−1)}

]
Here, ξ1ST−1 =

θST−1 + γρXT−2√
γ2σ2

η + σ2
ε

Also, let α = γρXT−2, β =
√
γ2σ2

η + σ2
ε

= min
{ST−1}


θWT−1ST−1 + αWT−1 + βWT−1

φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

)


+

θ (WT−1 − ST−1)
2
+ α (WT−1 − ST−1) + β (WT−1 − ST−1)

φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

)


This is a convex function and taking First Order Conditions give,

θWT−1 + βWT−1

 θ

β

−
(

θST−1+α
β

)
φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

) −

 φ
(

θST−1+α
β

)
Φ
(

θST−1+α
β

)


2



−2θ (WT−1 − ST−1)− α+ β

−
φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

)
+
θ (WT−1 − ST−1)

β


(

θ(WT−1−ST−1)+α
β

)
φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

) +

 φ
(

θ(WT−1−ST−1)+α
β

)
Φ
(

θ(WT−1−ST−1)+α
β

)


2

 = 0
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11.7 Proof of Proposition 6

Proof. Consider,

VT (PT−1, XT−1,WT ) = ET

[
max

{(
P̃T (1 + θWT + γXT )− PT−1

)
, 0
}
WT

]

VT (PT−1, XT−1,WT ) = ET

[
max

{(
P̃T−1e

BT [1 + θWT + γ (ρXT−1 + ηT )]− PT−1

)
, 0
}
WT

]

= ET

[
max

{
P̃T−1WT e

BT + θW 2
T P̃T−1e

BT + γρXT−1P̃T−1WT e
BT + γP̃T−1WT e

BT ηT −WTPT−1, 0
}]

= ET

[(
P̃T−1WT e

BT + θW 2
T P̃T−1e

BT + γρXT−1P̃T−1WT e
BT + γP̃T−1WT e

BT ηT −WTPT−1

)∣∣∣(
P̃T−1WT e

BT + θW 2
T P̃T−1e

BT + γρXT−1P̃T−1WT e
BT + γP̃T−1WT e

BT ηT −WTPT−1

)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y2|Y2 > 0] where,

Y2 =
(
P̃T−1WT e

BT + θW 2
T P̃T−1e

BT + γρXT−1P̃T−1WT e
BT + γP̃T−1WT e

BT ηT −WTPT−1

)
. We sim-

plify using some notational shortcuts,

E
[(
aeX + beX + ceX + deXY1 + k

)∣∣ (aeX + beX + ceX + deXY1 + k
)
> 0
]

X ∼ N
(
µX , σ

2
X

)
;Y1 ∼ N

(
0, σ2

Y1

)
;X and Y1 are independent. Also, a, b, c, d > 0, k < 0

≡ E
[(
eX {a+ b+ c+ dY1}+ k

)∣∣ (eX {a+ b+ c+ dY1}+ k
)
> 0
]

≡ E
[(
eXY + k

)∣∣ (eXY + k
)
> 0
]

X ∼ N
(
µX , σ

2
X

)
;Y ∼ N

(
µY , σ

2
Y

)
;X and Y are independent. Also, k < 0

Consider,

E
[(
eXY + k

)∣∣ (eXY + k
)
> 0
]

= E
[
k
∣∣(eXY + k

)
> 0

]
+ E

[(
eXY

) ∣∣(eXY + k
)
> 0

]
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= k + E
[(
Y eX

)∣∣ (Y eX + k
)
> 0
]

= k +

∫ ∫
yexf (yex| {yex + k} > 0) dxdy

Here, f (w) is the probability density function for w,

= k +

∫ ∫
yex

f (yex; {yex + k} > 0)

f ({yex + k} > 0)
dxdy

[We note that, yex > −k > 0 ⇒ y > 0]

= k +

∫ ∫
yex

f (y) f (ex; {yex + k} > 0)

f ({yex + k} > 0)
dxdy

= k +

∫
y

∫ exf
(
ex;
{
ex > −k

y

})
f
(
ex > −k

y

) dx

 f (y) dy

= k +

∫
y

[∫
exf

(
ex
∣∣∣∣{ex > −k

y

})
dx

]
f (y) dy

= k +

∫ (y<−k)

0

y

[∫
exf (ex |{ex > 1} ) dx

]
f (y) dy +

∫ ∞

(y>−k)

y

[∫
exf (ex |{ex < 1} ) dx

]
f (y) dy

= k +

∫ (−k)

0

y [E (W |W > c)] f (y) dy +

∫ ∞

(−k)

y [E (W |W < c)] f (y) dy ; here, W = eX and c = 1

Simplifying the inner expectations,

E (W |W > c) =
1

P (eX > c)

∫ ∞

c

w
1

wσX
√
2π
e
− 1

2

[
ln(w)−µX

σX

]2
dw

Put t = ln (w), we have, dw = etdt

E (W |W > c) =
1

P (X > ln (c))

∫ ∞

ln(c)

et

σX
√
2π
e
− 1

2

(
t−µX
σX

)2

dt

t− 1

2

(
t− µX

σX

)2

= − 1

2σ2
X

(
t−
(
µX + σ2

X

))2
+ µX +

σ2
X

2
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E (W |W > c) =
e
(
µX+ 1

2σ
2
X

)
P (µX + σXZ > ln (c))

∫ ∞

ln(c)

1

σX
√
2π
e
− 1

2

[
t−

(
µX+σ2

X

)
σX

]2

dt ;Z ∼ N (0, 1)

Put s =
[
t−

(
µX+σ2

X

)
σX

]
and b =

[
ln(c)−

(
µX+σ2

X

)
σX

]
we have, ds = dt

σX

E (W |W > c) =
e
(
µX+ 1

2σ
2
X

)
P
(
Z > ln(c)−µX

σX

) ∫ ∞

b

1√
2π
e−

1
2 s

2

ds

=
e
(
µX+ 1

2σ
2
X

)
P
(
Z < −ln(c)+µX

σX

) [∫ ∞

−∞

1√
2π
e−

1
2 s

2

ds−
∫ b

−∞

1√
2π
e−

1
2 s

2

ds

]

=
e
(
µX+ 1

2σ
2
X

)
P
(
Z < −ln(c)+µX

σX

) [1− Φ(b)] ; Φ is the standard normal CDF

=
e
(
µX+ 1

2σ
2
X

)
Φ
(

−ln(c)+µX

σX

) [Φ (−b)]

Similarly for the other case,

E (W |W < c) =
1

P (eX < c)

∫ c

0

w
1

wσX
√
2π
e
− 1

2

[
ln(w)−µX

σX

]2
dw

Put t = ln (w), we have, dw = etdt

E (W |W < c) =
1

P (X < ln (c))

∫ ln(c)

−∞

et

σX
√
2π
e
− 1

2

(
t−µX
σX

)2

dt

t− 1

2

(
t− µX

σX

)2

= − 1

2σ2
X

(
t−
(
µX + σ2

X

))2
+ µX +

σ2
X

2

E (W |W < c) =
e
(
µX+ 1

2σ
2
X

)
P (µX + σXZ < ln (c))

∫ ln(c)

−∞

1

σX
√
2π
e
− 1

2

[
t−

(
µX+σ2

X

)
σX

]2

dt ;Z ∼ N (0, 1)

Put s =
[
t−

(
µX+σ2

X

)
σX

]
and b =

[
ln(c)−

(
µX+σ2

X

)
σX

]
we have, ds = dt

σX

E (W |W < c) =
e
(
µX+ 1

2σ
2
X

)
P
(
Z < ln(c)−µX

σX

) ∫ b

−∞

1√
2π
e−

1
2 s

2

ds

=
e
(
µX+ 1

2σ
2
X

)
P
(
Z < ln(c)−µX

σX

) [Φ (b)] ; Φ is the standard normal CDF

=
e
(
µX+ 1

2σ
2
X

)
Φ
(

ln(c)−µX

σX

) [Φ (b)]
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Using the results for the inner expectations,

E
[(
eXY + k

)∣∣ (eXY + k
)
> 0
]
= k+

∫ (−k)

0

y

 e
(
µX+ 1

2σ
2
X

)
Φ
(

−ln(c)+µX

σX

) [Φ (−b)]

 f (y) dy+∫ ∞

(−k)

y

 e
(
µX+ 1

2σ
2
X

)
Φ
(

ln(c)−µX

σX

) [Φ (b)]

 f (y) dy

= k + e
(
µX+ 1

2σ
2
X

) ∫ (−k)

0

y

Φ
(

µX+σ2
X

σX

)
Φ
(

µX

σX

)
 f (y) dy +

∫ ∞

(−k)

y

Φ
(
−
[
µX+σ2

X

σX

])
Φ
(
−
[
µX

σX

])
 f (y) dy



= k + e
(
µX+ 1

2σ
2
X

) ∫ (−k)

0

y

Φ
(

µX+σ2
X

σX

)
Φ
(

µX

σX

)
 f (y) dy +

∫ ∞

(−k)

y

1− Φ
(

µX+σ2
X

σX

)
1− Φ

(
µX

σX

)
 f (y) dy



= k + e
(
µX+ 1

2σ
2
X

) Φ
(

µX+σ2
X

σX

)
Φ
(

µX

σX

)

∫ −

(
k+µY
σY

)
−µY

σY

(µY + σY z)
1√
2π
e−

1
2 z

2

dz

+

1− Φ
(

µX+σ2
X

σX

)
1− Φ

(
µX

σX

)

∫ ∞

−
(

k+µY
σY

) (µY + σY z)
1√
2π
e−

1
2 z

2

dz

 ;Z ∼ N (0, 1)

= k + e
(
µX+ 1

2σ
2
X

) Φ
(

µX+σ2
X

σX

)
Φ
(

µX

σX

)

{
µY

[
Φ

(
−
[
k + µY

σY

])
− Φ

(
−µY

σY

)]
− σY√

2π

[
e
− 1

2

(
k+µY
σY

)2

− e
− 1

2

(
µY
σY

)2
]}

+

1− Φ
(

µX+σ2
X

σX

)
1− Φ

(
µX

σX

)

{
µY

[
1− Φ

(
−
[
k + µY

σY

])]
+

σY√
2π

[
e
− 1

2

(
k+µY
σY

)2
]}

11.8 Proof of Proposition 7

Proof. Consider,

VT (PT−1, OT−1,WT ) = min
{ST }

ET [max {(PT − PT−1) , 0}ST ]

VT (PT−1, OT−1,WT ) = ET [max {(αPT−1 + θWTPT−1 − γ (OT −WT )PT−1 + εT ) , 0}WT ]

= ET

[
max

{(
αPT−1WT + θW 2

TPT−1 + γW 2
TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT

)
, 0
}]
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Setting β = θ + γ,

VT (PT−1, OT−1,WT ) = ET

[(
αPT−1WT + βW 2

TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT
)∣∣(

αPT−1WT + βW 2
TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT

)
> 0
]

{∵ E [max (X, c)] = E [X |X > c ]Pr [X > c] + E [c |X≤c ]Pr [X≤c] }

This is of the form, E [Y |Y > 0] where,

Y =
(
αPT−1WT + βW 2

TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT
)
. We then need to calculate,

ET

[ {
αPT−1WT + βW 2

TPT−1 − γρOT−1WTPT−1 +WT

(√
γ2P 2

T−1σ
2
η + σ2

ε

)
Z
}∣∣∣

Z >

−αPT−1 + βWTPT−1 − γρOT−1PT−1√
γ2P 2

T−1σ
2
η + σ2

ε

 , where Z ∼ N (0, 1)

[
∵ X ∼ N(µX , σ

2
X) ; Y ∼ N(µY , σ

2
Y ) ; U = X + Y ⇒ U ∼ N(µX + µY , σ

2
X + σ2

Y )
]

[
∵ Y ∼ N

(
αPT−1WT + βW 2

TPT−1 − γρOT−1WTPT−1 − γWTPT−1ηT +WT εT
)

≡ Y ∼ N
(
µ, σ2

)
⇒ Y = µ+ σZ ; Y > 0 ⇒ Z > −µ/σ

]

We have for every standard normal distribution, Z, and for every u, Pr [Z > −u] = Pr [Z < u] = Φ (u).

Here, φ and Φ are the standard normal PDF and CDF, respectively.

E [Z|Z > −u] =
1

Φ (u)

[∫ ∞

−u

tφ (t) dt

]
=

1

Φ (u)

[
−φ (t)|∞−u

]
=
φ (u)

Φ (u)

Hence we have,

E [Y |Y > 0] = µ+ σE
[
Z|Z >

(
−µ
σ

)]
= µ+

σφ (µ/σ)

Φ (µ/σ)

Setting, ψ (u) = u+ φ (u) /Φ(u),

E [Y |Y > 0] = σψ (µ/σ)
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VT (PT−1, OT−1,WT ) = WT

(√
γ2P 2

T−1σ
2
η + σ2

ε

)αPT−1 + βWTPT−1 − γρOT−1PT−1√
γ2P 2

T−1σ
2
η + σ2

ε



+

φ

(
αPT−1+βWTPT−1−γρOT−1PT−1√

γ2P 2
T−1σ

2
η+σ2

ε

)

Φ

(
αPT−1+βWTPT−1−γρOT−1PT−1√

γ2P 2
T−1σ

2
η+σ2

ε

)


=
(√

γ2P 2
T−1σ

2
η + σ2

ε

)
WTψ (ξWT ) , ξWT =

αPT−1 + βWTPT−1 − γρOT−1PT−1√
γ2P 2

T−1σ
2
η + σ2

ε


In the next to last period, T − 1, the Bellman equation is,

VT−1 (PT−2, OT−2,WT−1) = min
{ST−1}

ET−1 [max {(PT−1 − PT−2) , 0}ST−1 + VT (PT−1, OT−1,WT )]

= min
{ST−1}

ET−1

[
max

{(
αPT−2ST−1 + βS2

T−1PT−2 − γρOT−2ST−1PT−2 − γST−1PT−2ηT−1 + ST−1εT−1

)
, 0
}

+ VT ((α+ 1)PT−2 + βST−1PT−2 − γρOT−2PT−2 − γPT−2ηT−1 + εT−1, ρOT−2 + ηT−1,WT−1 − ST−1)]

= min
{ST−1}

ET−1

ST−1

(√
γ2P 2

T−2σ
2
η + σ2

ε

)

αPT−2 + βST−1PT−2 − γρOT−2PT−2√

γ2P 2
T−2σ

2
η + σ2

ε

+

φ

(
αPT−2+βST−1PT−2−γρOT−2PT−2√

γ2P 2
T−2σ

2
η+σ2

ε

)

Φ

(
αPT−2+βST−1PT−2−γρOT−2PT−2√

γ2P 2
T−2σ

2
η+σ2

ε

)


+(WT−1 − ST−1)

(√
γ2 {PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}2 σ2

η + σ2
ε

)
{PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}

{
α+ β (WT−1 − ST−1)− γρ2OT−2 − γρηT−1

}√
γ2 {PT−2 (α+ 1 + βST−1 − γρOT−2 − γηT−1) + εT−1}2 σ2

η + σ2
ε



+

φ

(
{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}

{
α+β(WT−1−ST−1)−γρ2OT−2−γρηT−1

}√
γ2{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}2σ2

η+σ2
ε

)

Φ

(
{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}{α+β(WT−1−ST−1)−γρ2OT−2−γρηT−1}√

γ2{PT−2(α+1+βST−1−γρOT−2−γηT−1)+εT−1}2σ2
η+σ2

ε

)
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12 Summary of Related Papers

Building on the foundation laid by (Bertsimas & Lo 1998), another popular way to decompose trading

costs is into temporary and permanent impact (See Almgren & Chriss 2001; Almgren 2003; and Almgren,

Thum, Hauptmann & Li 2005). While the theory behind this approach is extremely elegant and considers

both linear and nonlinear functions of the variables for estimating the impact, a practical way to compute it

requires measuring the price a certain interval after the order. This interval is ambiguous and could lead to

lower accuracy while using this measure.

More recent extensions include: (Huberman & Stanzl 2005) minimize the mean and variance of the costs

of trading for the case of market orders only and derive explicit formulas for the optimal trading strategies,

showing that risk-averse liquidity traders (someone that wishes to trade a fixed number of shares within a

certain time horizon) reduce their order sizes over time and execute a higher fraction of their total trading

volume in early periods when price volatility or liquidity increases. (Forsyth, Kennedy, Tse & Windcliff 2012)

argue that quadratic variation can be regarded as a reasonable risk measure (rather than variance) and derive

the Hamilton Jacobi Bellman (HJB) Partial Differential Equations (PDE) and provide numerical methods

to solve for both the optimal strategies and the efficient frontier with arbitrary constraints on the strategy,

assuming that the asset price dynamic follows either Geometric Brownian Motion (GBM) or Arithmetic

Brownian Motion (ABM).

(Almgren & Lorenz 2007) derive optimal strategies where the execution accelerates when the price moves

in the trader’s favor, and slows when the price moves adversely; (Kissell & Malamut 2006) term such adaptive

strategies “aggressive-in-the-money”; A “passive-in-the-money” strategy would react oppositely. (Schied,

Schöneborn & Tehranchi 2010) consider the problem faced by an investor who must liquidate a given basket

of assets over a finite time horizon. They assume that the investor’s utility has constant absolute risk

aversion (CARA5) and that the asset prices are given by a very general continuous-time, multi-asset price

impact model and show that the investor does no worse if he narrows his search to deterministic strategies.

(Schied & Schöneborn 2009) use a stochastic control approach6, building upon the continuous time model

of (Almgren 2003), and show that the value function and optimal control satisfy certain nonlinear parabolic

partial differential equations that can be solved numerically. (Kato 2014) develops a mathematical model of

optimal execution, by formulating it as a stochastic control problem in the continuous time domain. The

continuity of the value function and the semigroup property (Bellman principle) are investigated with the

findings that the value function is continuous in each parameter except for the time origin, where the right-

continuity at t = 0, depends on the market impact function. The semigroup property suggests that the value
5CARA has exponential utility of the form u (c) = 1 − e−αc, so that the absolute risk aversion, A (c) = −u′′(c)

u′(c) = α, a
constant. Wikipedia Link on Risk Aversion.

6(Wikipedia Link on Stochastic Control: Stochastic control or stochastic optimal control is a subfield of control theory that
deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system.)
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function is characterized as a viscosity solution of the corresponding HJB equation, which is a nonlinear

second order PDE.

(Gatheral & Schied 2011) find a closed-form solution for the optimal trade execution strategy in the

Almgren-Chriss framework assuming the underlying unaffected stock price (stock price before the impact or

before the transaction occurs) process is a GBM; (Schied 2013) investigates the robustness of this strategy

with respect to misspecification of the law of the underlying unaffected stock price process. (Guo & Zervos

2015) study the optimal execution problem in the context of a continuous time model with multiplicative price

impact, involving singular control rather than absolutely continuous control: this setting does not restrict

stock transactions to be realized at a rate over time; instead, it allows for block sales of stock. In classical

control problems (Shreve 1988), the cumulative displacement of the state, caused by control, is the integral

of the control process (or some function of it), and so is absolutely continuous. In impulse control, this

cumulative displacement has jumps, between which it is either constant or absolutely continuous. Bounded

variation control (defined to include any stochastic control problem in which one restricts the cumulative

displacement of the state caused by control to be of bounded variation on finite time intervals) admits both

these possibilities and also the possibility that the displacement of the state caused by the optimal control is

singularly continuous, at least with positive probability over some interval of time.

Building on empirical evidence that instantaneous market impact is a strongly concave function of the

volume (Lillo, Farmer & Mantegna 2003), well approximated by a power law function, at least for trading

rates that are not too high; (Curato, Gatheral & Lillo 2017) find that the discretized cost function exhibits

a rugged landscape, with many local minima separated by peaks. (Brunnermeier & Pedersen 2005; Carlin,

Lobo & Viswanathan 2007) are extensions to situations with several competing traders, wherein if one trader

is forced to liquidate his holdings, other traders also sell, creating downward price pressure, and buy back

the assets later at a lower price.

(Huberman & Stanzl 2004) provide theoretical arguments showing that in the absence of quasi-arbitrage

(availability of a sequence of round-trip trades that generate infinite expected profits with an infinite Sharpe

ratio, that is infinite expected profits per unit of risk), permanent price-impact functions must be linear;

though empirical investigations suggest that the shape of the limit order book (LOB) can be more complex

(Hopman 2007).

In contrast to many studies, where the dynamics of the asset price process is taken as a given fundamental,

(Obizhaeva & Wang 2013) proposed a market impact model that derives its dynamics from an underlying

model of a LOB. In this model, the ask part of the LOB consists of a uniform distribution of shares offered

at prices higher than the current best ask price. When the large trader is not active, the mid price of the

LOB fluctuates according to the actions of noise traders, and the bid-ask spread remains constant. A buy

market order of the large trader, however, consumes a block of shares located immediately to the right of
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the best ask and thus increase the ask price by a linear proportion of the size of the order. In addition, the

LOB will recover from the impact of the buy order, i.e., it will show a certain resilience. The resulting price

impact will neither be instantaneous nor entirely permanent but will decay on an exponential scale. Bid-ask

spread and market depth capture the static aspects of liquidity, related to the shape of the limit order book,

which determines how much the current price moves in response to a trade. Resilience reflects the dynamic

aspect of liquidity, related to how the future limit-order book evolves in response to the current trade.

(Alfonsi, Fruth & Schied 2010) extend this by allowing for a general shape of the LOB defined via a given

density function, which can accommodate empirically observed LOB shapes and obtain a nonlinear price

impact of market orders. They also allow for dynamic updating of trading strategies and intermediate sell

orders. The resilience of the LOB after a large market order is modeled as having an exponential recovery of

the number of limit orders, i.e., of the volume of the LOB, or the exponential recovery of the bid-ask spread.

(Predoiu, Shaikhet & Shreve 2011) derive optimal strategies, (under a general shape of the LOB), that are a

mixture of lump purchases and continuous purchases with the rate of purchase set to match the order book

resilience.

(Fruth, Schöneborn & Urusov 2014) analyze optimal strategies, for a risk neutral investor, when liquid-

ity varies deterministically (liquidity is time dependent; depth and resilience can be independently time-

dependent in contrast to the LOB model of Obizhaeva & Wang 2013) and find that in the case of extreme

changes in liquidity, it can even be optimal to completely refrain from trading in periods of low liquidity.

Price manipulations under such a scenario are ruled out by considering a time dependent spread, which

widens when liquidity is low and a trader buys in large quantity hoping to sell it later and make a profit

without depressing market prices in periods of high liquidity. Empirical studies based on the LOB model

are (Biais, Hillion & Spatt 1995; Potters & Bouchaud 2003; Bouchaud, Gefen, Potters & Wyart 2004; and

Weber & Rosenow 2005).

A related strand of literature looks at models of the LOB from the perspective of dealers seeking to submit

optimal strategies (maximize the utility of total terminal wealth) of bid and ask orders. (Ho & Stoll 1981)

analyze the optimal prices for a monopolistic dealer in a single stock when faced with a stochastic demand to

trade, modeled by a continuous time Poisson jump process, and facing return uncertainty, modeled by diffu-

sion processes. (Ho and Stoll 1980), consider the problem of dealers under competition (each dealer’s pricing

strategy depends not only on his own current and expected inventory position and his other characteristics,

but also on the current and expected inventory and other characteristics of the competitor) and show that

the bid and ask prices are shown to be related to the reservation (or indifference) prices of the agents.

(Avellaneda & Stoikov 2008) combine the utility framework with the microstructure of actual limit order

books, as described in the econo-physics literature, to infer reasonable arrival rates of buy and sell orders;

(Du, Zhu & Zhao 2016) extend the price dynamics to follow a GBM in which the drift part is updated by
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Bayesian learning in the beginning of the transaction day to capture the trader’s estimate of other traders’

target sizes and directions. (Cont, Stoikov & Talreja 2010) describe a stylized model for the dynamics of a

limit order book (which serves as a comprehensive introduction to limit order books), where the order flow

is described by independent Poisson processes and estimate the model parameters from high-frequency order

book time-series data from the Tokyo Stock Exchange.

(Cont, Kukanov & Stoikov 2014) study the price impact of order book events - limit orders, market orders,

and cancellations - using the NYSE Trades and Quotes data for fifty randomly selected stocks. They show a

linear relation between order flow imbalance, (OFI, defined as the imbalance between supply and demand at

the best bid and ask prices) and price changes, with a slope inversely proportional to the market depth. The

OFI explains price changes better than the trade imbalance, (defined as the difference between volumes of

buyer and seller-initiated trades), during a given interval, and is a more general measure of supply/demand

imbalance because it adequately includes the effect of trade imbalance.

(Cont & Kukanov 2017) focus on the order placement problem, which is to choose an order type - market

or limit order - and which trading venue(s) to submit it to, when there are multiple alternatives. They

derive an optimal split between market and limit orders for a single exchange and extend the results to the

general case of order placement on multiple trading venues. A numerical algorithm for solving the order

placement problem in a general case is provided using a robust modification of the Robbins-Monro stochastic

approximation technique (Robbins & Monro 1951; Nemirovski, Juditsky, Lan & Shapiro 2009).

(Guo, de Larrard & Ruan 2017) derive optimal placement strategies for both static and dynamic cases (in

the static case, as opposed to the dynamic case, a strategy is completely decided before execution takes place,

that is at t = 0, and is unchanged over the entire order internal), under a correlated random walk model,

with mean-reversion for the best ask/bid price (the spread between the best bid price and the best ask price

is always one tick and the best ask price increases or decreases one tick at each time step; also the change

in the ask price is a Markov chain, with probability that makes prices mean reverting). In the static case,

the optimal strategy involves only the market order, the best bid, and the second best bid; whereas for the

dynamic case it depends on the remaining trading time, the market momentum, and the price mean-reversion

factor.

(Gabaix, Gopikrishnan & Stanley 2006) present a theory in which spikes in trading volume and returns,

and hence stock market volatility, are created by a combination of news and the trades of large investors.

Spikes in market activity can imply that the empirical moments might be infinite; requiring returns, trading

volume, price impact and the size of large institutional investors to follow power law distributions, which is

supported by plenty of empirical evidence. The model explains the power law distribution of price impact and

reconciles the power law of returns and trading volume, while deriving the optimal behavior of institutional

investors.

86



While our work focuses on separating impact and timing in the (Bertsimas & Lo 1998)

framework; a natural and interesting continuation would be to extend this separation to models

of the limit order book.

Models of market impact and the design of better trading strategies are becoming an integral part of

the present trend at automation and the increasing use of algorithms. (Jain 2005) assembles the dates

of announcement and actual introduction of electronic trading by the leading exchange of 120 countries

to examine the long term and medium term impact of automation. He finds that automation of trading

on a stock exchange has a long-term impact on listed firms’ cost of equity. Estimates from the dividend

growth model, as well as the international CAPM, suggest a significant decline in expected returns after

the introduction of electronic trading in the world’s equity markets, especially in the developing nations and

confirms the finding from previous studies that electronic trading improves a stock’s liquidity and reduces

investors’ trading costs. (Hendershott, Jones & Menkveld 2011) perform an empirical study on New York

Stock Exchange stocks and find that algorithmic trading and liquidity are positively related.

It is worth noting a contrasting result from an earlier study. (Venkataraman 2001) compares securities on

the New York Stock Exchange (NYSE) (a floor-based trading structure with human intermediaries, specialists,

and floor brokers) and the Paris Bourse (automated limit-order trading structure). He finds that execution

costs might be higher on automated venues even after controlling for differences in adverse selection, relative

tick size, and economic attributes. A trade occurs when an aggressive trader submits a market order and

demands liquidity, hence the rules on a venue are designed to attract demanders of liquidity and nudge

liquidity providers to display their orders. Displaying limit orders involves risks. First, the counter-parties

could be better informed, and liquidity providers could get picked off. Hence, they would like the trading

system to allow them to trade selectively with counter-parties of their choice. Second, they risk being front-

run by other traders with an increase in the market impact of their orders. Hence, large traders want to

hide their orders and expose them only to traders who are most likely to trade with them. This means fully

automated exchanges, which anecdotally seems to be the way ahead, need to take special care to formulate

rules, to help liquidity providers better control the risks of order exposure.

What this also means is that, the design of better strategies and models is crucial to survive

and thrive in this continuing trend at automation. Our paper aims to fill the gap in existing

models of trading costs, which are theoretically elegant but are not readily applicable to real life

trading situations, since they do not allow participants to gauge how they are performing in

comparison to the other participants with whom they are competing for liquidity. Our models

have a strong theoretical foundation but they can be applied to actual trading situations due to

the insights they provide to participants. In addition, our numerical framework can be be used

to obtain optimal execution schedules under any law of motion of prices.
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